Ildephonse Nizeyimana, George Otieno Orwa, Michael Arthur Ofori, Samuel Musili Mwalili
{"title":"Cox回归中未检测到的可能显著效应的审查平衡函数","authors":"Ildephonse Nizeyimana, George Otieno Orwa, Michael Arthur Ofori, Samuel Musili Mwalili","doi":"10.1155/2023/6676767","DOIUrl":null,"url":null,"abstract":"Weighted Cox regression models were proposed as an alternative to the standard Cox proportional hazards models where consistent estimators can be obtained with more relative strength compared to unweighted cases. We proposed censoring balancing functions which can be built in a way that allows us to obtain the maximum possible significant treatment effects that may have gone undetected due to censoring. The harm caused by this is compensated and new weighted parameter estimates are found. These functions are constructed to be monotonic because even the hazard ratios are not exactly constant as in the ideal case, but are violated by monotonic deviations in time. For more than one covariate, even the interaction between covariates in addition to censoring can lead to the loss of significance for some covariates’ effects. Undetected significant effects of one covariate can be obtained, still keeping the significance and approximate size of the remaining one(s). This is performed by keeping the consistency of the parameter estimates. The results from both the simulated datasets and their application to real datasets supported the importance of the suggested censoring balancing functions in both one covariate and more than one covariate cases.","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Censoring Balancing Functions for Undetected Probably Significant Effects in Cox Regression\",\"authors\":\"Ildephonse Nizeyimana, George Otieno Orwa, Michael Arthur Ofori, Samuel Musili Mwalili\",\"doi\":\"10.1155/2023/6676767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weighted Cox regression models were proposed as an alternative to the standard Cox proportional hazards models where consistent estimators can be obtained with more relative strength compared to unweighted cases. We proposed censoring balancing functions which can be built in a way that allows us to obtain the maximum possible significant treatment effects that may have gone undetected due to censoring. The harm caused by this is compensated and new weighted parameter estimates are found. These functions are constructed to be monotonic because even the hazard ratios are not exactly constant as in the ideal case, but are violated by monotonic deviations in time. For more than one covariate, even the interaction between covariates in addition to censoring can lead to the loss of significance for some covariates’ effects. Undetected significant effects of one covariate can be obtained, still keeping the significance and approximate size of the remaining one(s). This is performed by keeping the consistency of the parameter estimates. The results from both the simulated datasets and their application to real datasets supported the importance of the suggested censoring balancing functions in both one covariate and more than one covariate cases.\",\"PeriodicalId\":39893,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6676767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6676767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Censoring Balancing Functions for Undetected Probably Significant Effects in Cox Regression
Weighted Cox regression models were proposed as an alternative to the standard Cox proportional hazards models where consistent estimators can be obtained with more relative strength compared to unweighted cases. We proposed censoring balancing functions which can be built in a way that allows us to obtain the maximum possible significant treatment effects that may have gone undetected due to censoring. The harm caused by this is compensated and new weighted parameter estimates are found. These functions are constructed to be monotonic because even the hazard ratios are not exactly constant as in the ideal case, but are violated by monotonic deviations in time. For more than one covariate, even the interaction between covariates in addition to censoring can lead to the loss of significance for some covariates’ effects. Undetected significant effects of one covariate can be obtained, still keeping the significance and approximate size of the remaining one(s). This is performed by keeping the consistency of the parameter estimates. The results from both the simulated datasets and their application to real datasets supported the importance of the suggested censoring balancing functions in both one covariate and more than one covariate cases.
期刊介绍:
The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.