利用大数据挖掘预测印尼伊斯兰股票市场雅加达伊斯兰指数的每日精度提升

IF 1.8 Q3 MANAGEMENT
Mohammed Ayoub Ledhem, Warda Moussaoui
{"title":"利用大数据挖掘预测印尼伊斯兰股票市场雅加达伊斯兰指数的每日精度提升","authors":"Mohammed Ayoub Ledhem, Warda Moussaoui","doi":"10.1108/jm2-12-2022-0291","DOIUrl":null,"url":null,"abstract":"Purpose This paper aims to apply several data mining techniques for predicting the daily precision improvement of Jakarta Islamic Index (JKII) prices based on big data of symmetric volatility in Indonesia’s Islamic stock market. Design/methodology/approach This research uses big data mining techniques to predict daily precision improvement of JKII prices by applying the AdaBoost, K-nearest neighbor, random forest and artificial neural networks. This research uses big data with symmetric volatility as inputs in the predicting model, whereas the closing prices of JKII were used as the target outputs of daily precision improvement. For choosing the optimal prediction performance according to the criteria of the lowest prediction errors, this research uses four metrics of mean absolute error, mean squared error, root mean squared error and R -squared. Findings The experimental results determine that the optimal technique for predicting the daily precision improvement of the JKII prices in Indonesia’s Islamic stock market is the AdaBoost technique, which generates the optimal predicting performance with the lowest prediction errors, and provides the optimum knowledge from the big data of symmetric volatility in Indonesia’s Islamic stock market. In addition, the random forest technique is also considered another robust technique in predicting the daily precision improvement of the JKII prices as it delivers closer values to the optimal performance of the AdaBoost technique. Practical implications This research is filling the literature gap of the absence of using big data mining techniques in the prediction process of Islamic stock markets by delivering new operational techniques for predicting the daily stock precision improvement. Also, it helps investors to manage the optimal portfolios and to decrease the risk of trading in global Islamic stock markets based on using big data mining of symmetric volatility. Originality/value This research is a pioneer in using big data mining of symmetric volatility in the prediction of an Islamic stock market index.","PeriodicalId":16349,"journal":{"name":"Journal of Modelling in Management","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting daily precision improvement of Jakarta Islamic Index in Indonesia’s Islamic stock market using big data mining\",\"authors\":\"Mohammed Ayoub Ledhem, Warda Moussaoui\",\"doi\":\"10.1108/jm2-12-2022-0291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose This paper aims to apply several data mining techniques for predicting the daily precision improvement of Jakarta Islamic Index (JKII) prices based on big data of symmetric volatility in Indonesia’s Islamic stock market. Design/methodology/approach This research uses big data mining techniques to predict daily precision improvement of JKII prices by applying the AdaBoost, K-nearest neighbor, random forest and artificial neural networks. This research uses big data with symmetric volatility as inputs in the predicting model, whereas the closing prices of JKII were used as the target outputs of daily precision improvement. For choosing the optimal prediction performance according to the criteria of the lowest prediction errors, this research uses four metrics of mean absolute error, mean squared error, root mean squared error and R -squared. Findings The experimental results determine that the optimal technique for predicting the daily precision improvement of the JKII prices in Indonesia’s Islamic stock market is the AdaBoost technique, which generates the optimal predicting performance with the lowest prediction errors, and provides the optimum knowledge from the big data of symmetric volatility in Indonesia’s Islamic stock market. In addition, the random forest technique is also considered another robust technique in predicting the daily precision improvement of the JKII prices as it delivers closer values to the optimal performance of the AdaBoost technique. Practical implications This research is filling the literature gap of the absence of using big data mining techniques in the prediction process of Islamic stock markets by delivering new operational techniques for predicting the daily stock precision improvement. Also, it helps investors to manage the optimal portfolios and to decrease the risk of trading in global Islamic stock markets based on using big data mining of symmetric volatility. Originality/value This research is a pioneer in using big data mining of symmetric volatility in the prediction of an Islamic stock market index.\",\"PeriodicalId\":16349,\"journal\":{\"name\":\"Journal of Modelling in Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modelling in Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jm2-12-2022-0291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modelling in Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jm2-12-2022-0291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在应用几种数据挖掘技术,基于印度尼西亚伊斯兰股票市场对称波动的大数据,预测雅加达伊斯兰指数(JKII)价格的每日精度提升。本研究采用大数据挖掘技术,通过AdaBoost、k近邻、随机森林和人工神经网络预测JKII价格的每日精度提高。本研究使用具有对称波动率的大数据作为预测模型的输入,而JKII的收盘价作为每日精度改进的目标输出。为了根据预测误差最小的标准选择最优的预测性能,本研究使用了平均绝对误差、均方误差、均方根误差和R -平方四个指标。实验结果表明,预测印尼伊斯兰股票市场JKII价格日精度提升的最优技术是AdaBoost技术,该技术能以最小的预测误差产生最优的预测性能,并提供印尼伊斯兰股票市场对称波动大数据的最优知识。此外,随机森林技术也被认为是预测JKII价格每日精度提高的另一种强大技术,因为它提供的值更接近AdaBoost技术的最佳性能。本研究通过提供新的操作技术来预测每日股票精度的提高,填补了在伊斯兰股票市场预测过程中没有使用大数据挖掘技术的文献空白。利用对称波动率的大数据挖掘,帮助投资者管理最优投资组合,降低全球伊斯兰股票市场的交易风险。原创性/价值本研究是在伊斯兰股票市场指数预测中使用对称波动的大数据挖掘的先驱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting daily precision improvement of Jakarta Islamic Index in Indonesia’s Islamic stock market using big data mining
Purpose This paper aims to apply several data mining techniques for predicting the daily precision improvement of Jakarta Islamic Index (JKII) prices based on big data of symmetric volatility in Indonesia’s Islamic stock market. Design/methodology/approach This research uses big data mining techniques to predict daily precision improvement of JKII prices by applying the AdaBoost, K-nearest neighbor, random forest and artificial neural networks. This research uses big data with symmetric volatility as inputs in the predicting model, whereas the closing prices of JKII were used as the target outputs of daily precision improvement. For choosing the optimal prediction performance according to the criteria of the lowest prediction errors, this research uses four metrics of mean absolute error, mean squared error, root mean squared error and R -squared. Findings The experimental results determine that the optimal technique for predicting the daily precision improvement of the JKII prices in Indonesia’s Islamic stock market is the AdaBoost technique, which generates the optimal predicting performance with the lowest prediction errors, and provides the optimum knowledge from the big data of symmetric volatility in Indonesia’s Islamic stock market. In addition, the random forest technique is also considered another robust technique in predicting the daily precision improvement of the JKII prices as it delivers closer values to the optimal performance of the AdaBoost technique. Practical implications This research is filling the literature gap of the absence of using big data mining techniques in the prediction process of Islamic stock markets by delivering new operational techniques for predicting the daily stock precision improvement. Also, it helps investors to manage the optimal portfolios and to decrease the risk of trading in global Islamic stock markets based on using big data mining of symmetric volatility. Originality/value This research is a pioneer in using big data mining of symmetric volatility in the prediction of an Islamic stock market index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
12.50%
发文量
52
期刊介绍: Journal of Modelling in Management (JM2) provides a forum for academics and researchers with a strong interest in business and management modelling. The journal analyses the conceptual antecedents and theoretical underpinnings leading to research modelling processes which derive useful consequences in terms of management science, business and management implementation and applications. JM2 is focused on the utilization of management data, which is amenable to research modelling processes, and welcomes academic papers that not only encompass the whole research process (from conceptualization to managerial implications) but also make explicit the individual links between ''antecedents and modelling'' (how to tackle certain problems) and ''modelling and consequences'' (how to apply the models and draw appropriate conclusions). The journal is particularly interested in innovative methodological and statistical modelling processes and those models that result in clear and justified managerial decisions. JM2 specifically promotes and supports research writing, that engages in an academically rigorous manner, in areas related to research modelling such as: A priori theorizing conceptual models, Artificial intelligence, machine learning, Association rule mining, clustering, feature selection, Business analytics: Descriptive, Predictive, and Prescriptive Analytics, Causal analytics: structural equation modeling, partial least squares modeling, Computable general equilibrium models, Computer-based models, Data mining, data analytics with big data, Decision support systems and business intelligence, Econometric models, Fuzzy logic modeling, Generalized linear models, Multi-attribute decision-making models, Non-linear models, Optimization, Simulation models, Statistical decision models, Statistical inference making and probabilistic modeling, Text mining, web mining, and visual analytics, Uncertainty-based reasoning models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信