三维有限分布时滞Benjamin-Bona-Mahony系统的动力学行为

IF 1 4区 数学 Q1 MATHEMATICS
Lingrui Zhang, Xue-zhi Li, Keqin Su
{"title":"三维有限分布时滞Benjamin-Bona-Mahony系统的动力学行为","authors":"Lingrui Zhang, Xue-zhi Li, Keqin Su","doi":"10.3934/era.20233348","DOIUrl":null,"url":null,"abstract":"<abstract><p>We study the Benjamin-Bona-Mahony model with finite distributed delay in 3D, which depicts the dispersive impact of long waves. Based on the well-posedness of model, the family of pullback attractors for the evolutionary processes generated by a global weak solution has been obtained, which is unique and minimal, via verifying asymptotic compactness in functional space with delay $ C_V $ and topological space $ V\\times C_V $, where the energy equation method and a retarded Gronwall inequality are utilized.</p></abstract>","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":"309 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical behavior of Benjamin-Bona-Mahony system with finite distributed delay in 3D\",\"authors\":\"Lingrui Zhang, Xue-zhi Li, Keqin Su\",\"doi\":\"10.3934/era.20233348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>We study the Benjamin-Bona-Mahony model with finite distributed delay in 3D, which depicts the dispersive impact of long waves. Based on the well-posedness of model, the family of pullback attractors for the evolutionary processes generated by a global weak solution has been obtained, which is unique and minimal, via verifying asymptotic compactness in functional space with delay $ C_V $ and topological space $ V\\\\times C_V $, where the energy equation method and a retarded Gronwall inequality are utilized.</p></abstract>\",\"PeriodicalId\":48554,\"journal\":{\"name\":\"Electronic Research Archive\",\"volume\":\"309 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Archive\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/era.20233348\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/era.20233348","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

< >< >我们研究了三维有限分布延迟的Benjamin-Bona-Mahony模型,该模型描述了长波的色散影响。在模型适定性的基础上,利用能量方程法和延迟Gronwall不等式,验证了具有延迟C_V $的泛函空间和拓扑空间V\乘以C_V $上的渐近紧性,得到了由全局弱解生成的演化过程的拉回吸引子族的唯一性和极小性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical behavior of Benjamin-Bona-Mahony system with finite distributed delay in 3D

We study the Benjamin-Bona-Mahony model with finite distributed delay in 3D, which depicts the dispersive impact of long waves. Based on the well-posedness of model, the family of pullback attractors for the evolutionary processes generated by a global weak solution has been obtained, which is unique and minimal, via verifying asymptotic compactness in functional space with delay $ C_V $ and topological space $ V\times C_V $, where the energy equation method and a retarded Gronwall inequality are utilized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信