以玉米芯酶解渣为吸附剂的染料可持续脱除方法

IF 1 4区 工程技术 Q4 ENGINEERING, CHEMICAL
Guilong Yan, Yuzhen Zhou, Xinyi Zhao, Jianguo Wu, Ci Jin, Liqin Zhao, Wei Wang, Ying Chen, Xiaoya Yao
{"title":"以玉米芯酶解渣为吸附剂的染料可持续脱除方法","authors":"Guilong Yan, Yuzhen Zhou, Xinyi Zhao, Jianguo Wu, Ci Jin, Liqin Zhao, Wei Wang, Ying Chen, Xiaoya Yao","doi":"10.5004/dwt.2023.29716","DOIUrl":null,"url":null,"abstract":"In this study, the potential of enzymatic hydrolysis residue of corncob (EHRC), an intrinsic byproduct of biorefinery, as dye adsorbent was surveyed. The chemical and structural analysis indicated that EHRC and raw corncob had numerous active functional groups and a large, rough adsorption surface. These properties, more prominent in EHRC, underlined the material’s efficiency in dye adsorption. EHRC and raw corncob were more favorable for the adsorption of methylene blue (MB) than methyl orange. The adsorption capacities of both EHRC and raw corncob increased with increasing initial dye concentration, and adsorption occurred rapidly. The adsorption capacity of EHRC did not change much when the solution pH was greater than the pH at point zero charge (pH PZC , 3.78). The process modelling demonstrated that adsorption of MB onto EHRC well fitted by the pseudo-second-order and Langmuir isotherm models. The adsorption was a spontaneous exothermic reaction based on thermodynamic analysis. These results showed that EHRC could be used as an efficient and cheap adsorbent.","PeriodicalId":11260,"journal":{"name":"Desalination and Water Treatment","volume":"25 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable approaches for dye removal using enzymatic hydrolysis residue of corncob as an adsorbent\",\"authors\":\"Guilong Yan, Yuzhen Zhou, Xinyi Zhao, Jianguo Wu, Ci Jin, Liqin Zhao, Wei Wang, Ying Chen, Xiaoya Yao\",\"doi\":\"10.5004/dwt.2023.29716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the potential of enzymatic hydrolysis residue of corncob (EHRC), an intrinsic byproduct of biorefinery, as dye adsorbent was surveyed. The chemical and structural analysis indicated that EHRC and raw corncob had numerous active functional groups and a large, rough adsorption surface. These properties, more prominent in EHRC, underlined the material’s efficiency in dye adsorption. EHRC and raw corncob were more favorable for the adsorption of methylene blue (MB) than methyl orange. The adsorption capacities of both EHRC and raw corncob increased with increasing initial dye concentration, and adsorption occurred rapidly. The adsorption capacity of EHRC did not change much when the solution pH was greater than the pH at point zero charge (pH PZC , 3.78). The process modelling demonstrated that adsorption of MB onto EHRC well fitted by the pseudo-second-order and Langmuir isotherm models. The adsorption was a spontaneous exothermic reaction based on thermodynamic analysis. These results showed that EHRC could be used as an efficient and cheap adsorbent.\",\"PeriodicalId\":11260,\"journal\":{\"name\":\"Desalination and Water Treatment\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination and Water Treatment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5004/dwt.2023.29716\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination and Water Treatment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5004/dwt.2023.29716","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sustainable approaches for dye removal using enzymatic hydrolysis residue of corncob as an adsorbent
In this study, the potential of enzymatic hydrolysis residue of corncob (EHRC), an intrinsic byproduct of biorefinery, as dye adsorbent was surveyed. The chemical and structural analysis indicated that EHRC and raw corncob had numerous active functional groups and a large, rough adsorption surface. These properties, more prominent in EHRC, underlined the material’s efficiency in dye adsorption. EHRC and raw corncob were more favorable for the adsorption of methylene blue (MB) than methyl orange. The adsorption capacities of both EHRC and raw corncob increased with increasing initial dye concentration, and adsorption occurred rapidly. The adsorption capacity of EHRC did not change much when the solution pH was greater than the pH at point zero charge (pH PZC , 3.78). The process modelling demonstrated that adsorption of MB onto EHRC well fitted by the pseudo-second-order and Langmuir isotherm models. The adsorption was a spontaneous exothermic reaction based on thermodynamic analysis. These results showed that EHRC could be used as an efficient and cheap adsorbent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Desalination and Water Treatment
Desalination and Water Treatment 工程技术-工程:化工
CiteScore
2.20
自引率
9.10%
发文量
0
审稿时长
5.3 months
期刊介绍: The journal is dedicated to research and application of desalination technology, environment and energy considerations, integrated water management, water reuse, wastewater and related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信