缺失数据下随机过程的谱密度估计及贝叶斯深度学习的不确定性量化

Yu Chen, Edoardo Patelli, Benjamin Edwards, Michael Beer
{"title":"缺失数据下随机过程的谱密度估计及贝叶斯深度学习的不确定性量化","authors":"Yu Chen, Edoardo Patelli, Benjamin Edwards, Michael Beer","doi":"10.7712/120223.10371.19949","DOIUrl":null,"url":null,"abstract":". Stochastic processes are widely adopted in many domains to deal with problems which are stochastic in nature and involve strong nonlinearity, nonstationarity and uncertain system parameters. However, the uncertainties of spectral representation of the underlying stochastic processes have not been adequately acknowledged due to the data problems in practice, for instance, missing data. Therefore, this paper proposes a novel method for uncertainty quantification of spectral representation in the presence of missing data using Bayesian deep learning models. A range of missing levels are tested. An example in stochastic dynamics is employed for illustration.","PeriodicalId":486785,"journal":{"name":"4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPECTRAL DENSITY ESTIMATION OF STOCHASTIC PROCESSES UNDER MISSING DATA AND UNCERTAINTY QUANTIFICATION WITH BAYESIAN DEEP LEARNING\",\"authors\":\"Yu Chen, Edoardo Patelli, Benjamin Edwards, Michael Beer\",\"doi\":\"10.7712/120223.10371.19949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Stochastic processes are widely adopted in many domains to deal with problems which are stochastic in nature and involve strong nonlinearity, nonstationarity and uncertain system parameters. However, the uncertainties of spectral representation of the underlying stochastic processes have not been adequately acknowledged due to the data problems in practice, for instance, missing data. Therefore, this paper proposes a novel method for uncertainty quantification of spectral representation in the presence of missing data using Bayesian deep learning models. A range of missing levels are tested. An example in stochastic dynamics is employed for illustration.\",\"PeriodicalId\":486785,\"journal\":{\"name\":\"4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7712/120223.10371.19949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7712/120223.10371.19949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
SPECTRAL DENSITY ESTIMATION OF STOCHASTIC PROCESSES UNDER MISSING DATA AND UNCERTAINTY QUANTIFICATION WITH BAYESIAN DEEP LEARNING
. Stochastic processes are widely adopted in many domains to deal with problems which are stochastic in nature and involve strong nonlinearity, nonstationarity and uncertain system parameters. However, the uncertainties of spectral representation of the underlying stochastic processes have not been adequately acknowledged due to the data problems in practice, for instance, missing data. Therefore, this paper proposes a novel method for uncertainty quantification of spectral representation in the presence of missing data using Bayesian deep learning models. A range of missing levels are tested. An example in stochastic dynamics is employed for illustration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信