用同卵双胞胎测试人脸相似性

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
IET Biometrics Pub Date : 2022-08-30 DOI:10.1049/bme2.12090
Shoaib Meraj Sami, John McCauley, Sobhan Soleymani, Nasser Nasrabadi, Jeremy Dawson
{"title":"用同卵双胞胎测试人脸相似性","authors":"Shoaib Meraj Sami,&nbsp;John McCauley,&nbsp;Sobhan Soleymani,&nbsp;Nasser Nasrabadi,&nbsp;Jeremy Dawson","doi":"10.1049/bme2.12090","DOIUrl":null,"url":null,"abstract":"<p>The problem of distinguishing identical twins and non-twin look-alikes in automated facial recognition (FR) applications has become increasingly important with the widespread adoption of facial biometrics. Due to the high facial similarity of both identical twins and look-alikes, these face pairs represent the hardest cases presented to facial recognition tools. This work presents an application of one of the largest twin data sets compiled to date to address two FR challenges: (1) determining a baseline measure of facial similarity between identical twins and (2) applying this similarity measure to determine the impact of doppelgangers, or look-alikes, on FR performance for large face data sets. The facial similarity measure is determined via a deep convolutional neural network. This network is trained on a tailored verification task designed to encourage the network to group together highly similar face pairs in the embedding space and achieves a test AUC of 0.9799. The proposed network provides a quantitative similarity score for any two given faces and has been applied to large-scale face data sets to identify similar face pairs. An additional analysis that correlates the comparison score returned by a facial recognition tool and the similarity score returned by the proposed network has also been performed.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"11 5","pages":"459-484"},"PeriodicalIF":1.8000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12090","citationCount":"0","resultStr":"{\"title\":\"Benchmarking human face similarity using identical twins\",\"authors\":\"Shoaib Meraj Sami,&nbsp;John McCauley,&nbsp;Sobhan Soleymani,&nbsp;Nasser Nasrabadi,&nbsp;Jeremy Dawson\",\"doi\":\"10.1049/bme2.12090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The problem of distinguishing identical twins and non-twin look-alikes in automated facial recognition (FR) applications has become increasingly important with the widespread adoption of facial biometrics. Due to the high facial similarity of both identical twins and look-alikes, these face pairs represent the hardest cases presented to facial recognition tools. This work presents an application of one of the largest twin data sets compiled to date to address two FR challenges: (1) determining a baseline measure of facial similarity between identical twins and (2) applying this similarity measure to determine the impact of doppelgangers, or look-alikes, on FR performance for large face data sets. The facial similarity measure is determined via a deep convolutional neural network. This network is trained on a tailored verification task designed to encourage the network to group together highly similar face pairs in the embedding space and achieves a test AUC of 0.9799. The proposed network provides a quantitative similarity score for any two given faces and has been applied to large-scale face data sets to identify similar face pairs. An additional analysis that correlates the comparison score returned by a facial recognition tool and the similarity score returned by the proposed network has also been performed.</p>\",\"PeriodicalId\":48821,\"journal\":{\"name\":\"IET Biometrics\",\"volume\":\"11 5\",\"pages\":\"459-484\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12090\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Biometrics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12090\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12090","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着面部生物识别技术的广泛应用,在自动面部识别(FR)应用中区分同卵双胞胎和非双胞胎的问题变得越来越重要。由于同卵双胞胎和长得很像的人的面部高度相似,这些面部对代表了面部识别工具最难处理的情况。这项工作展示了迄今为止最大的双胞胎数据集之一的应用,以解决两个FR挑战:(1)确定同卵双胞胎之间面部相似性的基线测量;(2)应用该相似性测量来确定二重人格或长相相似者对大型面部数据集的FR性能的影响。面部相似性测量是通过深度卷积神经网络确定的。该网络在定制的验证任务上进行训练,旨在鼓励网络将嵌入空间中高度相似的人脸对组合在一起,并实现0.9799的测试AUC。该网络为任意两个给定的人脸提供了定量的相似性评分,并已应用于大规模的人脸数据集来识别相似的人脸对。还进行了另一项分析,将面部识别工具返回的比较分数与所提议的网络返回的相似性分数相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Benchmarking human face similarity using identical twins

Benchmarking human face similarity using identical twins

The problem of distinguishing identical twins and non-twin look-alikes in automated facial recognition (FR) applications has become increasingly important with the widespread adoption of facial biometrics. Due to the high facial similarity of both identical twins and look-alikes, these face pairs represent the hardest cases presented to facial recognition tools. This work presents an application of one of the largest twin data sets compiled to date to address two FR challenges: (1) determining a baseline measure of facial similarity between identical twins and (2) applying this similarity measure to determine the impact of doppelgangers, or look-alikes, on FR performance for large face data sets. The facial similarity measure is determined via a deep convolutional neural network. This network is trained on a tailored verification task designed to encourage the network to group together highly similar face pairs in the embedding space and achieves a test AUC of 0.9799. The proposed network provides a quantitative similarity score for any two given faces and has been applied to large-scale face data sets to identify similar face pairs. An additional analysis that correlates the comparison score returned by a facial recognition tool and the similarity score returned by the proposed network has also been performed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信