Nithin Raveendran, Javier Valls, Asit Kumar Pradhan, Narayanan Rengaswamy, Francisco Garcia-Herrero, Bane Vasić
{"title":"量子LDPC码的软综合征迭代译码及硬件架构","authors":"Nithin Raveendran, Javier Valls, Asit Kumar Pradhan, Narayanan Rengaswamy, Francisco Garcia-Herrero, Bane Vasić","doi":"10.1140/epjqt/s40507-023-00201-1","DOIUrl":null,"url":null,"abstract":"<div><p>In practical quantum error correction implementations, the measurement of syndrome information is an unreliable step—typically modeled as a binary measurement outcome flipped with some probability. However, the measured syndrome is in fact a discretized value of the continuous voltage or current values obtained in the physical implementation of the syndrome extraction. In this paper, we use this “soft” or analog information to benefit iterative decoders for decoding quantum low-density parity-check (QLDPC) codes. Syndrome-based iterative belief propagation decoders are modified to utilize the soft syndrome to correct both data and syndrome errors simultaneously. We demonstrate the advantages of the proposed scheme not only in terms of comparison of thresholds and logical error rates for quasi-cyclic lifted-product QLDPC code families but also with faster convergence of iterative decoders. Additionally, we derive hardware (FPGA) architectures of these soft syndrome decoders and obtain similar performance in terms of error correction to the ideal models even with reduced precision in the soft information. The total latency of the hardware architectures is about 600 ns (for the QLDPC codes considered) in a 20 nm CMOS process FPGA device, and the area overhead is almost constant—less than 50% compared to min-sum decoders with noisy syndromes.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00201-1","citationCount":"0","resultStr":"{\"title\":\"Soft syndrome iterative decoding of quantum LDPC codes and hardware architectures\",\"authors\":\"Nithin Raveendran, Javier Valls, Asit Kumar Pradhan, Narayanan Rengaswamy, Francisco Garcia-Herrero, Bane Vasić\",\"doi\":\"10.1140/epjqt/s40507-023-00201-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In practical quantum error correction implementations, the measurement of syndrome information is an unreliable step—typically modeled as a binary measurement outcome flipped with some probability. However, the measured syndrome is in fact a discretized value of the continuous voltage or current values obtained in the physical implementation of the syndrome extraction. In this paper, we use this “soft” or analog information to benefit iterative decoders for decoding quantum low-density parity-check (QLDPC) codes. Syndrome-based iterative belief propagation decoders are modified to utilize the soft syndrome to correct both data and syndrome errors simultaneously. We demonstrate the advantages of the proposed scheme not only in terms of comparison of thresholds and logical error rates for quasi-cyclic lifted-product QLDPC code families but also with faster convergence of iterative decoders. Additionally, we derive hardware (FPGA) architectures of these soft syndrome decoders and obtain similar performance in terms of error correction to the ideal models even with reduced precision in the soft information. The total latency of the hardware architectures is about 600 ns (for the QLDPC codes considered) in a 20 nm CMOS process FPGA device, and the area overhead is almost constant—less than 50% compared to min-sum decoders with noisy syndromes.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00201-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-023-00201-1\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00201-1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Soft syndrome iterative decoding of quantum LDPC codes and hardware architectures
In practical quantum error correction implementations, the measurement of syndrome information is an unreliable step—typically modeled as a binary measurement outcome flipped with some probability. However, the measured syndrome is in fact a discretized value of the continuous voltage or current values obtained in the physical implementation of the syndrome extraction. In this paper, we use this “soft” or analog information to benefit iterative decoders for decoding quantum low-density parity-check (QLDPC) codes. Syndrome-based iterative belief propagation decoders are modified to utilize the soft syndrome to correct both data and syndrome errors simultaneously. We demonstrate the advantages of the proposed scheme not only in terms of comparison of thresholds and logical error rates for quasi-cyclic lifted-product QLDPC code families but also with faster convergence of iterative decoders. Additionally, we derive hardware (FPGA) architectures of these soft syndrome decoders and obtain similar performance in terms of error correction to the ideal models even with reduced precision in the soft information. The total latency of the hardware architectures is about 600 ns (for the QLDPC codes considered) in a 20 nm CMOS process FPGA device, and the area overhead is almost constant—less than 50% compared to min-sum decoders with noisy syndromes.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.