各向异性Besov空间的重排估计和限制嵌入

Pub Date : 2023-10-09 DOI:10.1007/s10476-023-0241-3
V. I. Kolyada
{"title":"各向异性Besov空间的重排估计和限制嵌入","authors":"V. I. Kolyada","doi":"10.1007/s10476-023-0241-3","DOIUrl":null,"url":null,"abstract":"<div><p>The paper is dedicated to the study of embeddings of the anisotropic Besov spaces <span>\\(B_{p,{\\theta _1}, \\ldots ,{\\theta _n}}^{{\\beta _1}, \\ldots ,{\\beta _n}}\\)</span> (ℝ<sup><i>n</i></sup>) into Lorentz spaces. We find the sharp asymptotic behaviour of embedding constants when some of the exponents <i>β</i><sub><i>k</i></sub> tend to 1 (<i>β</i><sub><i>k</i></sub> &lt; 1). In particular, these results give an extension of the estimate proved by Bourgain, Brezis, and Mironescu for isotropic Besov spaces. Also, in the limit, we obtain a link with some known embeddings of anisotropic Lipschitz spaces.</p><p>One of the key results of the paper is an anisotropic type estimate of rearrangements in terms of partial moduli of continuity.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0241-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Rearrangement Estimates and Limiting Embeddings for Anisotropic Besov Spaces\",\"authors\":\"V. I. Kolyada\",\"doi\":\"10.1007/s10476-023-0241-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper is dedicated to the study of embeddings of the anisotropic Besov spaces <span>\\\\(B_{p,{\\\\theta _1}, \\\\ldots ,{\\\\theta _n}}^{{\\\\beta _1}, \\\\ldots ,{\\\\beta _n}}\\\\)</span> (ℝ<sup><i>n</i></sup>) into Lorentz spaces. We find the sharp asymptotic behaviour of embedding constants when some of the exponents <i>β</i><sub><i>k</i></sub> tend to 1 (<i>β</i><sub><i>k</i></sub> &lt; 1). In particular, these results give an extension of the estimate proved by Bourgain, Brezis, and Mironescu for isotropic Besov spaces. Also, in the limit, we obtain a link with some known embeddings of anisotropic Lipschitz spaces.</p><p>One of the key results of the paper is an anisotropic type estimate of rearrangements in terms of partial moduli of continuity.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-023-0241-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0241-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0241-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究各向异性贝索夫空间\(B_{p,{\theta _1}, \ldots ,{\theta _n}}^{{\beta _1}, \ldots ,{\beta _n}}\) (n)在洛伦兹空间中的嵌入问题。当某些指数βk趋于1时,我们发现嵌入常数具有明显的渐近性(βk &lt;特别地,这些结果给出了Bourgain, Brezis和Mironescu对各向同性Besov空间的估计的推广。此外,在极限情况下,我们还得到了具有已知各向异性Lipschitz空间嵌入的链路。本文的主要成果之一是利用连续性的偏模估计重排的各向异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Rearrangement Estimates and Limiting Embeddings for Anisotropic Besov Spaces

The paper is dedicated to the study of embeddings of the anisotropic Besov spaces \(B_{p,{\theta _1}, \ldots ,{\theta _n}}^{{\beta _1}, \ldots ,{\beta _n}}\) (ℝn) into Lorentz spaces. We find the sharp asymptotic behaviour of embedding constants when some of the exponents βk tend to 1 (βk < 1). In particular, these results give an extension of the estimate proved by Bourgain, Brezis, and Mironescu for isotropic Besov spaces. Also, in the limit, we obtain a link with some known embeddings of anisotropic Lipschitz spaces.

One of the key results of the paper is an anisotropic type estimate of rearrangements in terms of partial moduli of continuity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信