Duncan R. Sutherland, Aine Boyer Connolly, Maximilian Amsler, Ming-Chiang Chang, Katie Rose Gann, Vidit Gupta, Sebastian Ament, Dan Guevarra, John M. Gregoire, Carla P. Gomes, R. Bruce van Dover*, Michael O. Thompson*
{"title":"氧化薄膜中材料转化的光学识别","authors":"Duncan R. Sutherland, Aine Boyer Connolly, Maximilian Amsler, Ming-Chiang Chang, Katie Rose Gann, Vidit Gupta, Sebastian Ament, Dan Guevarra, John M. Gregoire, Carla P. Gomes, R. Bruce van Dover*, Michael O. Thompson*","doi":"10.1021/acscombsci.0c00172","DOIUrl":null,"url":null,"abstract":"<p >Recent advances in high-throughput experimentation for combinatorial studies have accelerated the discovery and analysis of materials across a wide range of compositions and synthesis conditions. However, many of the more powerful characterization methods are limited by speed, cost, availability, and/or resolution. To make efficient use of these methods, there is value in developing approaches for identifying critical compositions and conditions to be used as <i>a priori</i> knowledge for follow-up characterization with high-precision techniques, such as micrometer-scale synchrotron-based X-ray diffraction (XRD). Here, we demonstrate the use of optical microscopy and reflectance spectroscopy to identify likely phase-change boundaries in thin film libraries. These methods are used to delineate possible metastable phase boundaries following lateral-gradient laser spike annealing (lg-LSA) of oxide materials. The set of boundaries are then compared with definitive determinations of structural transformations obtained using high-resolution XRD. We demonstrate that the optical methods detect more than 95% of the structural transformations in a composition-gradient La-Mn-O library and a Ga<sub>2</sub>O<sub>3</sub> sample, both subject to an extensive set of lg-LSA anneals. Our results provide quantitative support for the value of optically detected transformations as <i>a priori</i> data to guide subsequent structural characterization, ultimately accelerating and enhancing the efficient implementation of micrometer-resolution XRD experiments.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acscombsci.0c00172","citationCount":"4","resultStr":"{\"title\":\"Optical Identification of Materials Transformations in Oxide Thin Films\",\"authors\":\"Duncan R. Sutherland, Aine Boyer Connolly, Maximilian Amsler, Ming-Chiang Chang, Katie Rose Gann, Vidit Gupta, Sebastian Ament, Dan Guevarra, John M. Gregoire, Carla P. Gomes, R. Bruce van Dover*, Michael O. Thompson*\",\"doi\":\"10.1021/acscombsci.0c00172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Recent advances in high-throughput experimentation for combinatorial studies have accelerated the discovery and analysis of materials across a wide range of compositions and synthesis conditions. However, many of the more powerful characterization methods are limited by speed, cost, availability, and/or resolution. To make efficient use of these methods, there is value in developing approaches for identifying critical compositions and conditions to be used as <i>a priori</i> knowledge for follow-up characterization with high-precision techniques, such as micrometer-scale synchrotron-based X-ray diffraction (XRD). Here, we demonstrate the use of optical microscopy and reflectance spectroscopy to identify likely phase-change boundaries in thin film libraries. These methods are used to delineate possible metastable phase boundaries following lateral-gradient laser spike annealing (lg-LSA) of oxide materials. The set of boundaries are then compared with definitive determinations of structural transformations obtained using high-resolution XRD. We demonstrate that the optical methods detect more than 95% of the structural transformations in a composition-gradient La-Mn-O library and a Ga<sub>2</sub>O<sub>3</sub> sample, both subject to an extensive set of lg-LSA anneals. Our results provide quantitative support for the value of optically detected transformations as <i>a priori</i> data to guide subsequent structural characterization, ultimately accelerating and enhancing the efficient implementation of micrometer-resolution XRD experiments.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2020-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/acscombsci.0c00172\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscombsci.0c00172\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscombsci.0c00172","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optical Identification of Materials Transformations in Oxide Thin Films
Recent advances in high-throughput experimentation for combinatorial studies have accelerated the discovery and analysis of materials across a wide range of compositions and synthesis conditions. However, many of the more powerful characterization methods are limited by speed, cost, availability, and/or resolution. To make efficient use of these methods, there is value in developing approaches for identifying critical compositions and conditions to be used as a priori knowledge for follow-up characterization with high-precision techniques, such as micrometer-scale synchrotron-based X-ray diffraction (XRD). Here, we demonstrate the use of optical microscopy and reflectance spectroscopy to identify likely phase-change boundaries in thin film libraries. These methods are used to delineate possible metastable phase boundaries following lateral-gradient laser spike annealing (lg-LSA) of oxide materials. The set of boundaries are then compared with definitive determinations of structural transformations obtained using high-resolution XRD. We demonstrate that the optical methods detect more than 95% of the structural transformations in a composition-gradient La-Mn-O library and a Ga2O3 sample, both subject to an extensive set of lg-LSA anneals. Our results provide quantitative support for the value of optically detected transformations as a priori data to guide subsequent structural characterization, ultimately accelerating and enhancing the efficient implementation of micrometer-resolution XRD experiments.