循环反馈回路的双稳性和振荡性

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Jules Guilberteau
{"title":"循环反馈回路的双稳性和振荡性","authors":"Jules Guilberteau","doi":"10.1007/s10440-023-00618-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the stability of an Ordinary Differential Equation (ODE) usually referred to as Cyclic Feedback Loop, which typically models a biological network of <span>\\(d\\)</span> molecules where each molecule regulates its successor in a cycle (<span>\\(A_{1}\\rightarrow A_{2}\\rightarrow \\cdots \\rightarrow A_{d-1} \\rightarrow A_{d} \\rightarrow A_{1}\\)</span>). Regulations, which can be either positive or negative, are modelled by increasing or decreasing functions. We make an analysis of this model for a wide range of functions (including affine and Hill functions) by determining the parameters for which bistability and oscillatory behaviours arise. These results encompass previous theoretical studies of gene regulatory networks, which are particular cases of this model.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"188 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bistability and Oscillatory Behaviours of Cyclic Feedback Loops\",\"authors\":\"Jules Guilberteau\",\"doi\":\"10.1007/s10440-023-00618-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the stability of an Ordinary Differential Equation (ODE) usually referred to as Cyclic Feedback Loop, which typically models a biological network of <span>\\\\(d\\\\)</span> molecules where each molecule regulates its successor in a cycle (<span>\\\\(A_{1}\\\\rightarrow A_{2}\\\\rightarrow \\\\cdots \\\\rightarrow A_{d-1} \\\\rightarrow A_{d} \\\\rightarrow A_{1}\\\\)</span>). Regulations, which can be either positive or negative, are modelled by increasing or decreasing functions. We make an analysis of this model for a wide range of functions (including affine and Hill functions) by determining the parameters for which bistability and oscillatory behaviours arise. These results encompass previous theoretical studies of gene regulatory networks, which are particular cases of this model.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-023-00618-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-023-00618-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了通常被称为循环反馈回路的常微分方程(ODE)的稳定性,它通常模拟了一个由\(d\)分子组成的生物网络,其中每个分子在一个循环中调节其后继分子(\(A_{1}\rightarrow A_{2}\rightarrow \cdots \rightarrow A_{d-1} \rightarrow A_{d} \rightarrow A_{1}\))。规则可以是积极的,也可以是消极的,通过增加或减少功能来建模。我们通过确定双稳性和振荡行为产生的参数,对该模型进行了广泛的函数(包括仿射和希尔函数)分析。这些结果涵盖了先前基因调控网络的理论研究,这是该模型的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bistability and Oscillatory Behaviours of Cyclic Feedback Loops

Bistability and Oscillatory Behaviours of Cyclic Feedback Loops

In this paper, we study the stability of an Ordinary Differential Equation (ODE) usually referred to as Cyclic Feedback Loop, which typically models a biological network of \(d\) molecules where each molecule regulates its successor in a cycle (\(A_{1}\rightarrow A_{2}\rightarrow \cdots \rightarrow A_{d-1} \rightarrow A_{d} \rightarrow A_{1}\)). Regulations, which can be either positive or negative, are modelled by increasing or decreasing functions. We make an analysis of this model for a wide range of functions (including affine and Hill functions) by determining the parameters for which bistability and oscillatory behaviours arise. These results encompass previous theoretical studies of gene regulatory networks, which are particular cases of this model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信