{"title":"一元代数间的庞培泛函方程","authors":"Y. Aissi, D. Zeglami, A. Mouzoun","doi":"10.1007/s13370-023-01116-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathcal {A}\\)</span> and <span>\\(\\mathcal {B}\\)</span> be unital algebras, that need not be abelian, over fields <span>\\(\\mathbb {K}\\)</span> and <span>\\(\\mathbb {K^{\\prime }}\\)</span> respectively, let <span>\\(\\alpha ,a,b,c\\in \\mathbb {K},\\)</span> <span>\\(\\beta \\in \\mathbb {K^{\\prime }}\\)</span> and <span>\\( \\lambda \\in \\mathbb {C}\\)</span>. The present work aims to determine the general solution <span>\\(\\Phi :\\mathcal {A}\\rightarrow \\mathcal {B}\\)</span> of the functional equation </p><div><div><span>$$\\begin{aligned} \\Phi (x+y+\\alpha xy)=\\Phi (x)+\\Phi (y)+\\beta \\Phi (x)\\Phi (y),\\ x,y\\in \\mathcal {A}, \\end{aligned}$$</span></div></div><p>and to describe the solutions <span>\\(\\Phi :\\mathcal {A}\\rightarrow M_{2}(\\mathbb {C} ) \\)</span> of the functional equation </p><div><div><span>$$\\begin{aligned} \\Phi (ax+by+cxy)=\\Phi (x)+\\Phi (y)+\\lambda \\Phi (x)\\Phi (y),\\ x,y\\in \\mathcal {A}. \\end{aligned}$$</span></div></div><p>We also show that, when <span>\\((\\mathcal {A},\\cdot )\\)</span> (as a semigroup) is commutative and regular (for instance when <span>\\(\\dim \\mathcal {A}=1\\)</span>), the explicit forms of the solutions of the last equation can be given.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pompeiu’s functional equations between unital algebras\",\"authors\":\"Y. Aissi, D. Zeglami, A. Mouzoun\",\"doi\":\"10.1007/s13370-023-01116-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathcal {A}\\\\)</span> and <span>\\\\(\\\\mathcal {B}\\\\)</span> be unital algebras, that need not be abelian, over fields <span>\\\\(\\\\mathbb {K}\\\\)</span> and <span>\\\\(\\\\mathbb {K^{\\\\prime }}\\\\)</span> respectively, let <span>\\\\(\\\\alpha ,a,b,c\\\\in \\\\mathbb {K},\\\\)</span> <span>\\\\(\\\\beta \\\\in \\\\mathbb {K^{\\\\prime }}\\\\)</span> and <span>\\\\( \\\\lambda \\\\in \\\\mathbb {C}\\\\)</span>. The present work aims to determine the general solution <span>\\\\(\\\\Phi :\\\\mathcal {A}\\\\rightarrow \\\\mathcal {B}\\\\)</span> of the functional equation </p><div><div><span>$$\\\\begin{aligned} \\\\Phi (x+y+\\\\alpha xy)=\\\\Phi (x)+\\\\Phi (y)+\\\\beta \\\\Phi (x)\\\\Phi (y),\\\\ x,y\\\\in \\\\mathcal {A}, \\\\end{aligned}$$</span></div></div><p>and to describe the solutions <span>\\\\(\\\\Phi :\\\\mathcal {A}\\\\rightarrow M_{2}(\\\\mathbb {C} ) \\\\)</span> of the functional equation </p><div><div><span>$$\\\\begin{aligned} \\\\Phi (ax+by+cxy)=\\\\Phi (x)+\\\\Phi (y)+\\\\lambda \\\\Phi (x)\\\\Phi (y),\\\\ x,y\\\\in \\\\mathcal {A}. \\\\end{aligned}$$</span></div></div><p>We also show that, when <span>\\\\((\\\\mathcal {A},\\\\cdot )\\\\)</span> (as a semigroup) is commutative and regular (for instance when <span>\\\\(\\\\dim \\\\mathcal {A}=1\\\\)</span>), the explicit forms of the solutions of the last equation can be given.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-023-01116-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01116-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Pompeiu’s functional equations between unital algebras
Let \(\mathcal {A}\) and \(\mathcal {B}\) be unital algebras, that need not be abelian, over fields \(\mathbb {K}\) and \(\mathbb {K^{\prime }}\) respectively, let \(\alpha ,a,b,c\in \mathbb {K},\)\(\beta \in \mathbb {K^{\prime }}\) and \( \lambda \in \mathbb {C}\). The present work aims to determine the general solution \(\Phi :\mathcal {A}\rightarrow \mathcal {B}\) of the functional equation
We also show that, when \((\mathcal {A},\cdot )\) (as a semigroup) is commutative and regular (for instance when \(\dim \mathcal {A}=1\)), the explicit forms of the solutions of the last equation can be given.