Prasanta K. Nayak, Mayank Narang, Manoj Puravankara, Himanshu Tyagi, Bihan Banerjee, Saurabh Sharma, Rakesh Pandey, Arun Surya, Blesson Mathew, R. Arun, K. Ujjwal, Sreeja S. Kartha
{"title":"确定金牛座中金牛座t -金牛座恒星的数量:紫外线光学协同作用","authors":"Prasanta K. Nayak, Mayank Narang, Manoj Puravankara, Himanshu Tyagi, Bihan Banerjee, Saurabh Sharma, Rakesh Pandey, Arun Surya, Blesson Mathew, R. Arun, K. Ujjwal, Sreeja S. Kartha","doi":"10.1007/s12036-023-09972-6","DOIUrl":null,"url":null,"abstract":"<div><p>With the third data release of the Gaia mission, Gaia DR3 with its precise photometry and astrometry, it is now possible to study the behavior of stars at a scale never seen before. In this paper, we developed new criteria to identify T-Tauri stars (TTS) candidates using UV and optical color-magnitude diagrams (CMDs) by combining the GALEX and Gaia surveys. We found 19 TTS candidates and five of them are newly identified TTS in the Taurus molecular cloud (TMC), not cataloged before as TMC members. For some of the TTS candidates, we also obtained optical spectra from several Indian telescopes. We also present the analysis of distance and proper motion of young stars in the Taurus using data from Gaia DR3. We found that the stars in Taurus show a bimodal distribution with distance, having peaks at <span>\\(130.17_{-1.24}^{1.31}\\)</span> pc and <span>\\(156.25_{-5.00}^{1.86}\\)</span> pc. The reason for this bimodality, we think, is due to the fact that different clouds in the TMC region are at different distances. We further showed that the two populations have similar ages and proper motion distribution. Using the Gaia DR3 CMD, we showed that the age of Taurus is consistent with 1 Myr.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"44 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying the population of T-Tauri stars in Taurus: UV–optical synergy\",\"authors\":\"Prasanta K. Nayak, Mayank Narang, Manoj Puravankara, Himanshu Tyagi, Bihan Banerjee, Saurabh Sharma, Rakesh Pandey, Arun Surya, Blesson Mathew, R. Arun, K. Ujjwal, Sreeja S. Kartha\",\"doi\":\"10.1007/s12036-023-09972-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the third data release of the Gaia mission, Gaia DR3 with its precise photometry and astrometry, it is now possible to study the behavior of stars at a scale never seen before. In this paper, we developed new criteria to identify T-Tauri stars (TTS) candidates using UV and optical color-magnitude diagrams (CMDs) by combining the GALEX and Gaia surveys. We found 19 TTS candidates and five of them are newly identified TTS in the Taurus molecular cloud (TMC), not cataloged before as TMC members. For some of the TTS candidates, we also obtained optical spectra from several Indian telescopes. We also present the analysis of distance and proper motion of young stars in the Taurus using data from Gaia DR3. We found that the stars in Taurus show a bimodal distribution with distance, having peaks at <span>\\\\(130.17_{-1.24}^{1.31}\\\\)</span> pc and <span>\\\\(156.25_{-5.00}^{1.86}\\\\)</span> pc. The reason for this bimodality, we think, is due to the fact that different clouds in the TMC region are at different distances. We further showed that the two populations have similar ages and proper motion distribution. Using the Gaia DR3 CMD, we showed that the age of Taurus is consistent with 1 Myr.</p></div>\",\"PeriodicalId\":610,\"journal\":{\"name\":\"Journal of Astrophysics and Astronomy\",\"volume\":\"44 2\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astrophysics and Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12036-023-09972-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astrophysics and Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12036-023-09972-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Identifying the population of T-Tauri stars in Taurus: UV–optical synergy
With the third data release of the Gaia mission, Gaia DR3 with its precise photometry and astrometry, it is now possible to study the behavior of stars at a scale never seen before. In this paper, we developed new criteria to identify T-Tauri stars (TTS) candidates using UV and optical color-magnitude diagrams (CMDs) by combining the GALEX and Gaia surveys. We found 19 TTS candidates and five of them are newly identified TTS in the Taurus molecular cloud (TMC), not cataloged before as TMC members. For some of the TTS candidates, we also obtained optical spectra from several Indian telescopes. We also present the analysis of distance and proper motion of young stars in the Taurus using data from Gaia DR3. We found that the stars in Taurus show a bimodal distribution with distance, having peaks at \(130.17_{-1.24}^{1.31}\) pc and \(156.25_{-5.00}^{1.86}\) pc. The reason for this bimodality, we think, is due to the fact that different clouds in the TMC region are at different distances. We further showed that the two populations have similar ages and proper motion distribution. Using the Gaia DR3 CMD, we showed that the age of Taurus is consistent with 1 Myr.
期刊介绍:
The journal publishes original research papers on all aspects of astrophysics and astronomy, including instrumentation, laboratory astrophysics, and cosmology. Critical reviews of topical fields are also published.
Articles submitted as letters will be considered.