berglund - h bsch转置定则与sasaki几何

IF 0.6 3区 数学 Q3 MATHEMATICS
Ralph R. Gomez
{"title":"berglund - h<s:1> bsch转置定则与sasaki几何","authors":"Ralph R. Gomez","doi":"10.1007/s10455-023-09932-x","DOIUrl":null,"url":null,"abstract":"<div><p>We apply the Berglund–Hübsch transpose rule from BHK mirror symmetry to show that to an <span>\\(n-1\\)</span>-dimensional Calabi–Yau orbifold in weighted projective space defined by an invertible polynomial, we can associate four (possibly) distinct Sasaki manifolds of dimension <span>\\(2n+1\\)</span> which are <span>\\(n-1\\)</span>-connected and admit a metric of positive Ricci curvature. We apply this theorem to show that for a given K3 orbifold, there exist four seven-dimensional Sasakian manifolds of positive Ricci curvature, two of which are actually Sasaki–Einstein.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Berglund–Hübsch transpose rule and Sasakian geometry\",\"authors\":\"Ralph R. Gomez\",\"doi\":\"10.1007/s10455-023-09932-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We apply the Berglund–Hübsch transpose rule from BHK mirror symmetry to show that to an <span>\\\\(n-1\\\\)</span>-dimensional Calabi–Yau orbifold in weighted projective space defined by an invertible polynomial, we can associate four (possibly) distinct Sasaki manifolds of dimension <span>\\\\(2n+1\\\\)</span> which are <span>\\\\(n-1\\\\)</span>-connected and admit a metric of positive Ricci curvature. We apply this theorem to show that for a given K3 orbifold, there exist four seven-dimensional Sasakian manifolds of positive Ricci curvature, two of which are actually Sasaki–Einstein.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09932-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09932-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们应用BHK镜像对称的berglund - h bsch转置规则,证明了在可逆多项式定义的加权投影空间中的\(n-1\)维Calabi-Yau轨道上,我们可以关联4个(可能)不同的\(2n+1\)维(\(n-1\) -连通)且允许一个正Ricci曲率度规的Sasaki流形。我们应用这个定理证明了对于给定的K3轨道,存在4个正Ricci曲率的七维sasaki流形,其中2个实际上是Sasaki-Einstein流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Berglund–Hübsch transpose rule and Sasakian geometry

We apply the Berglund–Hübsch transpose rule from BHK mirror symmetry to show that to an \(n-1\)-dimensional Calabi–Yau orbifold in weighted projective space defined by an invertible polynomial, we can associate four (possibly) distinct Sasaki manifolds of dimension \(2n+1\) which are \(n-1\)-connected and admit a metric of positive Ricci curvature. We apply this theorem to show that for a given K3 orbifold, there exist four seven-dimensional Sasakian manifolds of positive Ricci curvature, two of which are actually Sasaki–Einstein.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信