Sasaki-Einstein 7-流形和Orlik猜想

IF 0.6 3区 数学 Q3 MATHEMATICS
Jaime Cuadros Valle, Joe Lope Vicente
{"title":"Sasaki-Einstein 7-流形和Orlik猜想","authors":"Jaime Cuadros Valle,&nbsp;Joe Lope Vicente","doi":"10.1007/s10455-023-09930-z","DOIUrl":null,"url":null,"abstract":"<div><p>We study the homology groups of certain 2-connected 7-manifolds admitting quasi-regular Sasaki–Einstein metrics, among them, we found 52 new examples of Sasaki–Einstein rational homology 7-spheres, extending the list given by Boyer et al. (Ann Inst Fourier 52(5):1569–1584, 2002). As a consequence, we exhibit new families of positive Sasakian homotopy 9-spheres given as cyclic branched covers, determine their diffeomorphism types and find out which elements do not admit extremal Sasaki metrics. We also improve previous results given by Boyer (Note Mat 28:63–105, 2008) showing new examples of Sasaki–Einstein 2-connected 7-manifolds homeomorphic to connected sums of <span>\\(S^3\\times S^4\\)</span>. Actually, we show that manifolds of the form <span>\\(\\#k\\left( S^{3} \\times S^{4}\\right) \\)</span> admit Sasaki–Einstein metrics for 22 different values of <i>k</i>. All these links arise as Thom–Sebastiani sums of chain type singularities and cycle type singularities where Orlik’s conjecture holds due to a recent result by Hertling and Mase (J Algebra Number Theory 16(4):955–1024, 2022).</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sasaki–Einstein 7-manifolds and Orlik’s conjecture\",\"authors\":\"Jaime Cuadros Valle,&nbsp;Joe Lope Vicente\",\"doi\":\"10.1007/s10455-023-09930-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the homology groups of certain 2-connected 7-manifolds admitting quasi-regular Sasaki–Einstein metrics, among them, we found 52 new examples of Sasaki–Einstein rational homology 7-spheres, extending the list given by Boyer et al. (Ann Inst Fourier 52(5):1569–1584, 2002). As a consequence, we exhibit new families of positive Sasakian homotopy 9-spheres given as cyclic branched covers, determine their diffeomorphism types and find out which elements do not admit extremal Sasaki metrics. We also improve previous results given by Boyer (Note Mat 28:63–105, 2008) showing new examples of Sasaki–Einstein 2-connected 7-manifolds homeomorphic to connected sums of <span>\\\\(S^3\\\\times S^4\\\\)</span>. Actually, we show that manifolds of the form <span>\\\\(\\\\#k\\\\left( S^{3} \\\\times S^{4}\\\\right) \\\\)</span> admit Sasaki–Einstein metrics for 22 different values of <i>k</i>. All these links arise as Thom–Sebastiani sums of chain type singularities and cycle type singularities where Orlik’s conjecture holds due to a recent result by Hertling and Mase (J Algebra Number Theory 16(4):955–1024, 2022).</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09930-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09930-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一类准正则Sasaki-Einstein度量的2-连通7-流形的同调群,其中,我们发现了52个Sasaki-Einstein有理同调7-球的新例子,扩展了Boyer等人给出的列表(Ann Inst Fourier 52(5): 1569-1584, 2002)。因此,我们展示了作为循环分支覆盖的正Sasaki同伦9球的新族,确定了它们的微分同胚类型,并找出了哪些元素不允许极值Sasaki度量。我们还改进了Boyer先前给出的结果(注Mat 28:63 - 105,2008),给出了Sasaki-Einstein 2连通7流形同纯于\(S^3\times S^4\)连通和的新例子。实际上,我们证明了\(\#k\left( S^{3} \times S^{4}\right) \)形式的流形对22个不同的k值承认Sasaki-Einstein度量。所有这些链接都是链型奇点和环型奇点的tom - sebastiani和,其中Orlik猜想由于Hertling和Mase最近的结果而成立(J代数数论16(4):955 - 1024,2022)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sasaki–Einstein 7-manifolds and Orlik’s conjecture

We study the homology groups of certain 2-connected 7-manifolds admitting quasi-regular Sasaki–Einstein metrics, among them, we found 52 new examples of Sasaki–Einstein rational homology 7-spheres, extending the list given by Boyer et al. (Ann Inst Fourier 52(5):1569–1584, 2002). As a consequence, we exhibit new families of positive Sasakian homotopy 9-spheres given as cyclic branched covers, determine their diffeomorphism types and find out which elements do not admit extremal Sasaki metrics. We also improve previous results given by Boyer (Note Mat 28:63–105, 2008) showing new examples of Sasaki–Einstein 2-connected 7-manifolds homeomorphic to connected sums of \(S^3\times S^4\). Actually, we show that manifolds of the form \(\#k\left( S^{3} \times S^{4}\right) \) admit Sasaki–Einstein metrics for 22 different values of k. All these links arise as Thom–Sebastiani sums of chain type singularities and cycle type singularities where Orlik’s conjecture holds due to a recent result by Hertling and Mase (J Algebra Number Theory 16(4):955–1024, 2022).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信