{"title":"室温一步法合成三嗪基共价有机骨架,用于可见光下双酚A的高效光降解","authors":"Pin Chen, Siyuan Di, Weixin Xie, Zihan Li, Shukui Zhu","doi":"10.1007/s11706-023-0661-9","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, a novel visible-light-responsive photocatalyst with high efficiency was firstly synthesized at room temperature. The mild synthetic method resulted in a uniform spherical triazine-based covalent organic framework (TrCOF2) with ultra-high specific surface area as well as chemical stability. Due to the synergistic effect between the self-assembled uniform spherical structure and the abundant triazine-based structure, photoelectron–hole pairs were efficiently separated and migrated on the catalysts. On this basis, TrCOF2 was successfully applied to efficiently degrade bisphenol A (BPA). More than 98% of BPA was deraded after 60 min of visible light treatment, where the active specie of •O<span>\n <sup>−</sup><sub>2</sub>\n \n </span> played a vital role during the degradation of BPA. The holes of TrCOF2 could produce O<sub>2</sub> by direct reaction with water or hydroxide ions. Simultaneously, photoelectrons can be captured by O<sub>2</sub> to generate •O<span>\n <sup>−</sup><sub>2</sub>\n \n </span>. Moreover, density functional theory (DFT) calculations proved the outstanding ability of the exciting electronic conductivity. Remarkably, a reasonable photocatalytic mechanism for TrCOF2 catalysts was proposed. This research can provide a facile strategy for the synthesis of TrCOFs catalysts at room temperature, which unfolds broad application prospects in the environmental field.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-step synthesis of triazine-based covalent organic frameworks at room temperature for efficient photodegradation of bisphenol A under visible light irradiation\",\"authors\":\"Pin Chen, Siyuan Di, Weixin Xie, Zihan Li, Shukui Zhu\",\"doi\":\"10.1007/s11706-023-0661-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Herein, a novel visible-light-responsive photocatalyst with high efficiency was firstly synthesized at room temperature. The mild synthetic method resulted in a uniform spherical triazine-based covalent organic framework (TrCOF2) with ultra-high specific surface area as well as chemical stability. Due to the synergistic effect between the self-assembled uniform spherical structure and the abundant triazine-based structure, photoelectron–hole pairs were efficiently separated and migrated on the catalysts. On this basis, TrCOF2 was successfully applied to efficiently degrade bisphenol A (BPA). More than 98% of BPA was deraded after 60 min of visible light treatment, where the active specie of •O<span>\\n <sup>−</sup><sub>2</sub>\\n \\n </span> played a vital role during the degradation of BPA. The holes of TrCOF2 could produce O<sub>2</sub> by direct reaction with water or hydroxide ions. Simultaneously, photoelectrons can be captured by O<sub>2</sub> to generate •O<span>\\n <sup>−</sup><sub>2</sub>\\n \\n </span>. Moreover, density functional theory (DFT) calculations proved the outstanding ability of the exciting electronic conductivity. Remarkably, a reasonable photocatalytic mechanism for TrCOF2 catalysts was proposed. This research can provide a facile strategy for the synthesis of TrCOFs catalysts at room temperature, which unfolds broad application prospects in the environmental field.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-023-0661-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0661-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
One-step synthesis of triazine-based covalent organic frameworks at room temperature for efficient photodegradation of bisphenol A under visible light irradiation
Herein, a novel visible-light-responsive photocatalyst with high efficiency was firstly synthesized at room temperature. The mild synthetic method resulted in a uniform spherical triazine-based covalent organic framework (TrCOF2) with ultra-high specific surface area as well as chemical stability. Due to the synergistic effect between the self-assembled uniform spherical structure and the abundant triazine-based structure, photoelectron–hole pairs were efficiently separated and migrated on the catalysts. On this basis, TrCOF2 was successfully applied to efficiently degrade bisphenol A (BPA). More than 98% of BPA was deraded after 60 min of visible light treatment, where the active specie of •O−2 played a vital role during the degradation of BPA. The holes of TrCOF2 could produce O2 by direct reaction with water or hydroxide ions. Simultaneously, photoelectrons can be captured by O2 to generate •O−2. Moreover, density functional theory (DFT) calculations proved the outstanding ability of the exciting electronic conductivity. Remarkably, a reasonable photocatalytic mechanism for TrCOF2 catalysts was proposed. This research can provide a facile strategy for the synthesis of TrCOFs catalysts at room temperature, which unfolds broad application prospects in the environmental field.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.