一类具有生物学背景的时滞q差分方程的正周期解

IF 1.2 3区 数学 Q1 MATHEMATICS
Marko Kostić, Halis Can Koyuncuoğlu, Youssef N. Raffoul
{"title":"一类具有生物学背景的时滞q差分方程的正周期解","authors":"Marko Kostić,&nbsp;Halis Can Koyuncuoğlu,&nbsp;Youssef N. Raffoul","doi":"10.1007/s43034-023-00306-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper specifically focuses on a specific type of <i>q</i>-difference equations that incorporate multiple delays. The main objective is to explore the existence of positive periodic solutions using coincidence degree theory. Notably, the equation studied in this paper has relevance to important biological growth models constructed on quantum domains. The significance of this research lies in the fact that quantum domains are not translation invariant. By investigating periodic solutions on quantum domains, the paper introduces a new perspective and makes notable advancements in the related literature, which predominantly focuses on translation invariant domains. This research contributes to a better understanding of periodic dynamics in systems governed by <i>q</i>-difference equations with multiple delays, particularly in the context of biological growth models on quantum domains.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive periodic solutions for certain kinds of delayed q-difference equations with biological background\",\"authors\":\"Marko Kostić,&nbsp;Halis Can Koyuncuoğlu,&nbsp;Youssef N. Raffoul\",\"doi\":\"10.1007/s43034-023-00306-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper specifically focuses on a specific type of <i>q</i>-difference equations that incorporate multiple delays. The main objective is to explore the existence of positive periodic solutions using coincidence degree theory. Notably, the equation studied in this paper has relevance to important biological growth models constructed on quantum domains. The significance of this research lies in the fact that quantum domains are not translation invariant. By investigating periodic solutions on quantum domains, the paper introduces a new perspective and makes notable advancements in the related literature, which predominantly focuses on translation invariant domains. This research contributes to a better understanding of periodic dynamics in systems governed by <i>q</i>-difference equations with multiple delays, particularly in the context of biological growth models on quantum domains.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-023-00306-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-023-00306-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究一类包含多重时滞的q-差分方程。主要目的是利用重合度理论探讨正周期解的存在性。值得注意的是,本文研究的方程与建立在量子域上的重要生物生长模型有关。本研究的意义在于量子域不是平移不变的。本文通过对量子域上周期解的研究,引入了一个新的视角,并在相关文献中取得了显著进展,这些文献主要集中在平移不变域上。这项研究有助于更好地理解由多重延迟的q差分方程控制的系统中的周期动力学,特别是在量子域的生物生长模型的背景下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive periodic solutions for certain kinds of delayed q-difference equations with biological background

This paper specifically focuses on a specific type of q-difference equations that incorporate multiple delays. The main objective is to explore the existence of positive periodic solutions using coincidence degree theory. Notably, the equation studied in this paper has relevance to important biological growth models constructed on quantum domains. The significance of this research lies in the fact that quantum domains are not translation invariant. By investigating periodic solutions on quantum domains, the paper introduces a new perspective and makes notable advancements in the related literature, which predominantly focuses on translation invariant domains. This research contributes to a better understanding of periodic dynamics in systems governed by q-difference equations with multiple delays, particularly in the context of biological growth models on quantum domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信