{"title":"变形顺序对多点成形形状精度的影响","authors":"Bin-Bin Jia, Yan Shen, Yanxia Gu","doi":"10.1007/s12289-023-01790-z","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-point forming with individually controlled force–displacement (MPF-ICFD) is a novel multi-point forming process with characteristics of good deformation uniformity and high forming accuracy. The process has two different deformation sequences: positive forming (PF) and negative forming (NF). The shape accuracy of a part is significantly different when the deformation order is changed. To reveal the influence mechanism of the deformation sequence on shape accuracy, experiments and numerical simulations are used to assess shape accuracy during multi-point forming. The deformation behaviours of a cylindrical surface, sail surface and saddle surface in PF and NF processes are investigated to obtain the shape accuracy characteristics of a sheet under different deformation sequences. In addition, the strain distribution characteristics of the cylindrical surface are given quantitatively. The influence mechanism of the deformation sequence on the shape accuracy is revealed. The results show that the amount of plastic deformation on the part is significantly increased and the shape accuracy is significantly improved during the PF process. When the loading conditions are identical, the maximum strain of the cylindrical parts is increased by 73.4%, and the amount of springback is decreased by 90.0%. The above research indicates that the PF process has good application prospects in sheet metal forming.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the deformation sequence on the shape accuracy of multi-point forming\",\"authors\":\"Bin-Bin Jia, Yan Shen, Yanxia Gu\",\"doi\":\"10.1007/s12289-023-01790-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-point forming with individually controlled force–displacement (MPF-ICFD) is a novel multi-point forming process with characteristics of good deformation uniformity and high forming accuracy. The process has two different deformation sequences: positive forming (PF) and negative forming (NF). The shape accuracy of a part is significantly different when the deformation order is changed. To reveal the influence mechanism of the deformation sequence on shape accuracy, experiments and numerical simulations are used to assess shape accuracy during multi-point forming. The deformation behaviours of a cylindrical surface, sail surface and saddle surface in PF and NF processes are investigated to obtain the shape accuracy characteristics of a sheet under different deformation sequences. In addition, the strain distribution characteristics of the cylindrical surface are given quantitatively. The influence mechanism of the deformation sequence on the shape accuracy is revealed. The results show that the amount of plastic deformation on the part is significantly increased and the shape accuracy is significantly improved during the PF process. When the loading conditions are identical, the maximum strain of the cylindrical parts is increased by 73.4%, and the amount of springback is decreased by 90.0%. The above research indicates that the PF process has good application prospects in sheet metal forming.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-023-01790-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01790-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Influence of the deformation sequence on the shape accuracy of multi-point forming
Multi-point forming with individually controlled force–displacement (MPF-ICFD) is a novel multi-point forming process with characteristics of good deformation uniformity and high forming accuracy. The process has two different deformation sequences: positive forming (PF) and negative forming (NF). The shape accuracy of a part is significantly different when the deformation order is changed. To reveal the influence mechanism of the deformation sequence on shape accuracy, experiments and numerical simulations are used to assess shape accuracy during multi-point forming. The deformation behaviours of a cylindrical surface, sail surface and saddle surface in PF and NF processes are investigated to obtain the shape accuracy characteristics of a sheet under different deformation sequences. In addition, the strain distribution characteristics of the cylindrical surface are given quantitatively. The influence mechanism of the deformation sequence on the shape accuracy is revealed. The results show that the amount of plastic deformation on the part is significantly increased and the shape accuracy is significantly improved during the PF process. When the loading conditions are identical, the maximum strain of the cylindrical parts is increased by 73.4%, and the amount of springback is decreased by 90.0%. The above research indicates that the PF process has good application prospects in sheet metal forming.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.