拟线性偏微分方程,插值空间和Hölderian映射

IF 0.6 3区 数学 Q3 MATHEMATICS
I. Ahmed, A. Fiorenza, M. R. Formica, A. Gogatishvili, A. El Hamidi, J. M. Rakotoson
{"title":"拟线性偏微分方程,插值空间和Hölderian映射","authors":"I. Ahmed,&nbsp;A. Fiorenza,&nbsp;M. R. Formica,&nbsp;A. Gogatishvili,&nbsp;A. El Hamidi,&nbsp;J. M. Rakotoson","doi":"10.1007/s10476-023-0245-z","DOIUrl":null,"url":null,"abstract":"<div><p>As in the work of Tartar [59], we develop here some new results on nonlinear interpolation of <i>α</i>-Hölderian mappings between normed spaces, by studying the action of the mappings on <i>K</i>-functionals and between interpolation spaces with logarithm functions. We apply these results to obtain some regularity results on the gradient of the solutions to quasilinear equations of the form </p><div><div><span>$$-\\text{div}(\\widehat{a}(\\nabla u))+V(u)=f,$$</span></div></div><p> where <i>V</i> is a nonlinear potential and <i>f</i> belongs to non-standard spaces like Lorentz–Zygmund spaces. We show several results; for instance, that the mapping <span>\\(\\cal{T}:\\cal{T}f=\\nabla u\\)</span> is locally or globally <i>α</i>-Hölderian under suitable values of <i>α</i> and appropriate hypotheses on <i>V</i> and <i>â</i>.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasilinear PDEs, Interpolation Spaces and Hölderian mappings\",\"authors\":\"I. Ahmed,&nbsp;A. Fiorenza,&nbsp;M. R. Formica,&nbsp;A. Gogatishvili,&nbsp;A. El Hamidi,&nbsp;J. M. Rakotoson\",\"doi\":\"10.1007/s10476-023-0245-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As in the work of Tartar [59], we develop here some new results on nonlinear interpolation of <i>α</i>-Hölderian mappings between normed spaces, by studying the action of the mappings on <i>K</i>-functionals and between interpolation spaces with logarithm functions. We apply these results to obtain some regularity results on the gradient of the solutions to quasilinear equations of the form </p><div><div><span>$$-\\\\text{div}(\\\\widehat{a}(\\\\nabla u))+V(u)=f,$$</span></div></div><p> where <i>V</i> is a nonlinear potential and <i>f</i> belongs to non-standard spaces like Lorentz–Zygmund spaces. We show several results; for instance, that the mapping <span>\\\\(\\\\cal{T}:\\\\cal{T}f=\\\\nabla u\\\\)</span> is locally or globally <i>α</i>-Hölderian under suitable values of <i>α</i> and appropriate hypotheses on <i>V</i> and <i>â</i>.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0245-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0245-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在tartar[59]的工作中,我们通过研究映射在k泛函上的作用以及插值空间与对数函数之间的作用,得到了赋范空间之间α-Hölderian映射的非线性插值的一些新结果。我们应用这些结果得到了形式为$$-\text{div}(\widehat{a}(\nabla u))+V(u)=f,$$的拟线性方程解梯度的一些正则性结果,其中V是非线性势,f属于非标准空间,如Lorentz-Zygmund空间。我们展示了几个结果;例如,在适当的α值和适当的V和假设下,映射\(\cal{T}:\cal{T}f=\nabla u\)是局部的或全局的α-Hölderian。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasilinear PDEs, Interpolation Spaces and Hölderian mappings

As in the work of Tartar [59], we develop here some new results on nonlinear interpolation of α-Hölderian mappings between normed spaces, by studying the action of the mappings on K-functionals and between interpolation spaces with logarithm functions. We apply these results to obtain some regularity results on the gradient of the solutions to quasilinear equations of the form

$$-\text{div}(\widehat{a}(\nabla u))+V(u)=f,$$

where V is a nonlinear potential and f belongs to non-standard spaces like Lorentz–Zygmund spaces. We show several results; for instance, that the mapping \(\cal{T}:\cal{T}f=\nabla u\) is locally or globally α-Hölderian under suitable values of α and appropriate hypotheses on V and â.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信