关于量子环面超代数的结构 \({{\cal E}_{m|n}}\)

Pub Date : 2023-11-15 DOI:10.1007/s10114-023-2426-x
Xiang Hua Wu, Hong Da Lin, Hong Lian Zhang
{"title":"关于量子环面超代数的结构 \\({{\\cal E}_{m|n}}\\)","authors":"Xiang Hua Wu,&nbsp;Hong Da Lin,&nbsp;Hong Lian Zhang","doi":"10.1007/s10114-023-2426-x","DOIUrl":null,"url":null,"abstract":"<div><p>Recently the quantum toroidal superalgebra <span>\\({{\\cal E}_{m|n}}\\)</span> associated with <span>\\({\\mathfrak{g}\\mathfrak{l}_{m|n}}\\)</span> was introduced by L. Bezerra and E. Mukhin, which is not a quantum Kac–Moody algebra. The quantum toroidal superalgebra <span>\\({{\\cal E}_{m|n}}\\)</span> exploits infinite sequences of generators and relations of the form, which are called Drinfeld realization. In this paper, we use only finite set of generators and relations to define an associative algebra <span>\\({\\cal E}_{m|n}^\\prime \\)</span> and show that there exists an epimorphism from <span>\\({\\cal E}_{m|n}^\\prime \\)</span> to the quantum toroidal superalgebra <span>\\({{\\cal E}_{m|n}}\\)</span>. In particular, the structure of <span>\\({\\cal E}_{m|n}^\\prime \\)</span> enjoys some properties like Drinfeld–Jimbo realization.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Structure of Quantum Toroidal Superalgebra \\\\({{\\\\cal E}_{m|n}}\\\\)\",\"authors\":\"Xiang Hua Wu,&nbsp;Hong Da Lin,&nbsp;Hong Lian Zhang\",\"doi\":\"10.1007/s10114-023-2426-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently the quantum toroidal superalgebra <span>\\\\({{\\\\cal E}_{m|n}}\\\\)</span> associated with <span>\\\\({\\\\mathfrak{g}\\\\mathfrak{l}_{m|n}}\\\\)</span> was introduced by L. Bezerra and E. Mukhin, which is not a quantum Kac–Moody algebra. The quantum toroidal superalgebra <span>\\\\({{\\\\cal E}_{m|n}}\\\\)</span> exploits infinite sequences of generators and relations of the form, which are called Drinfeld realization. In this paper, we use only finite set of generators and relations to define an associative algebra <span>\\\\({\\\\cal E}_{m|n}^\\\\prime \\\\)</span> and show that there exists an epimorphism from <span>\\\\({\\\\cal E}_{m|n}^\\\\prime \\\\)</span> to the quantum toroidal superalgebra <span>\\\\({{\\\\cal E}_{m|n}}\\\\)</span>. In particular, the structure of <span>\\\\({\\\\cal E}_{m|n}^\\\\prime \\\\)</span> enjoys some properties like Drinfeld–Jimbo realization.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-023-2426-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-023-2426-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,L. Bezerra和E. Mukhin引入了与\({\mathfrak{g}\mathfrak{l}_{m|n}}\)相关的量子环面超代数\({{\cal E}_{m|n}}\),它不是量子Kac-Moody代数。量子环面超代数\({{\cal E}_{m|n}}\)利用无限序列的生成器和形式的关系,这被称为德林菲尔德实现。在本文中,我们只用有限的生成子和关系集定义了一个关联代数\({\cal E}_{m|n}^\prime \),并证明了从\({\cal E}_{m|n}^\prime \)到量子环面超代数\({{\cal E}_{m|n}}\)存在一个外胚。特别地,\({\cal E}_{m|n}^\prime \)的结构具有一些类似于Drinfeld-Jimbo实现的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Structure of Quantum Toroidal Superalgebra \({{\cal E}_{m|n}}\)

Recently the quantum toroidal superalgebra \({{\cal E}_{m|n}}\) associated with \({\mathfrak{g}\mathfrak{l}_{m|n}}\) was introduced by L. Bezerra and E. Mukhin, which is not a quantum Kac–Moody algebra. The quantum toroidal superalgebra \({{\cal E}_{m|n}}\) exploits infinite sequences of generators and relations of the form, which are called Drinfeld realization. In this paper, we use only finite set of generators and relations to define an associative algebra \({\cal E}_{m|n}^\prime \) and show that there exists an epimorphism from \({\cal E}_{m|n}^\prime \) to the quantum toroidal superalgebra \({{\cal E}_{m|n}}\). In particular, the structure of \({\cal E}_{m|n}^\prime \) enjoys some properties like Drinfeld–Jimbo realization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信