Tianpei Yang, Weixun Wang, Jianye Hao, Matthew E. Taylor, Yong Liu, Xiaotian Hao, Yujing Hu, Yingfeng Chen, Changjie Fan, Chunxu Ren, Ye Huang, Jiangcheng Zhu, Yang Gao
{"title":"ASN:用于多智能体强化学习的动作语义网络","authors":"Tianpei Yang, Weixun Wang, Jianye Hao, Matthew E. Taylor, Yong Liu, Xiaotian Hao, Yujing Hu, Yingfeng Chen, Changjie Fan, Chunxu Ren, Ye Huang, Jiangcheng Zhu, Yang Gao","doi":"10.1007/s10458-023-09628-3","DOIUrl":null,"url":null,"abstract":"<div><p>In multiagent systems (MASs), each agent makes individual decisions but all contribute globally to the system’s evolution. Learning in MASs is difficult since each agent’s selection of actions must take place in the presence of other co-learning agents. Moreover, the environmental stochasticity and uncertainties increase exponentially with the number of agents. Previous works borrow various multiagent coordination mechanisms for use in deep learning architectures to facilitate multiagent coordination. However, none of them explicitly consider that different actions can have different influence on other agents, which we call the action semantics. In this paper, we propose a novel network architecture, named Action Semantics Network (ASN), that explicitly represents such action semantics between agents. ASN characterizes different actions’ influence on other agents using neural networks based on the action semantics between them. ASN can be easily combined with existing deep reinforcement learning (DRL) algorithms to boost their performance. Experimental results on StarCraft II micromanagement and Neural MMO show that ASN significantly improves the performance of state-of-the-art DRL approaches, compared with several other network architectures. We also successfully deploy ASN to a popular online MMORPG game called Justice Online, which indicates a promising future for ASN to be applied in even more complex scenarios.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"37 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ASN: action semantics network for multiagent reinforcement learning\",\"authors\":\"Tianpei Yang, Weixun Wang, Jianye Hao, Matthew E. Taylor, Yong Liu, Xiaotian Hao, Yujing Hu, Yingfeng Chen, Changjie Fan, Chunxu Ren, Ye Huang, Jiangcheng Zhu, Yang Gao\",\"doi\":\"10.1007/s10458-023-09628-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In multiagent systems (MASs), each agent makes individual decisions but all contribute globally to the system’s evolution. Learning in MASs is difficult since each agent’s selection of actions must take place in the presence of other co-learning agents. Moreover, the environmental stochasticity and uncertainties increase exponentially with the number of agents. Previous works borrow various multiagent coordination mechanisms for use in deep learning architectures to facilitate multiagent coordination. However, none of them explicitly consider that different actions can have different influence on other agents, which we call the action semantics. In this paper, we propose a novel network architecture, named Action Semantics Network (ASN), that explicitly represents such action semantics between agents. ASN characterizes different actions’ influence on other agents using neural networks based on the action semantics between them. ASN can be easily combined with existing deep reinforcement learning (DRL) algorithms to boost their performance. Experimental results on StarCraft II micromanagement and Neural MMO show that ASN significantly improves the performance of state-of-the-art DRL approaches, compared with several other network architectures. We also successfully deploy ASN to a popular online MMORPG game called Justice Online, which indicates a promising future for ASN to be applied in even more complex scenarios.</p></div>\",\"PeriodicalId\":55586,\"journal\":{\"name\":\"Autonomous Agents and Multi-Agent Systems\",\"volume\":\"37 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Agents and Multi-Agent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10458-023-09628-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-023-09628-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
ASN: action semantics network for multiagent reinforcement learning
In multiagent systems (MASs), each agent makes individual decisions but all contribute globally to the system’s evolution. Learning in MASs is difficult since each agent’s selection of actions must take place in the presence of other co-learning agents. Moreover, the environmental stochasticity and uncertainties increase exponentially with the number of agents. Previous works borrow various multiagent coordination mechanisms for use in deep learning architectures to facilitate multiagent coordination. However, none of them explicitly consider that different actions can have different influence on other agents, which we call the action semantics. In this paper, we propose a novel network architecture, named Action Semantics Network (ASN), that explicitly represents such action semantics between agents. ASN characterizes different actions’ influence on other agents using neural networks based on the action semantics between them. ASN can be easily combined with existing deep reinforcement learning (DRL) algorithms to boost their performance. Experimental results on StarCraft II micromanagement and Neural MMO show that ASN significantly improves the performance of state-of-the-art DRL approaches, compared with several other network architectures. We also successfully deploy ASN to a popular online MMORPG game called Justice Online, which indicates a promising future for ASN to be applied in even more complex scenarios.
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.