一类能量阻尼板模型的多项式压缩稳定性

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Flank D. M. Bezerra, Linfang Liu, Vando Narciso
{"title":"一类能量阻尼板模型的多项式压缩稳定性","authors":"Flank D. M. Bezerra,&nbsp;Linfang Liu,&nbsp;Vando Narciso","doi":"10.1007/s10440-023-00619-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we consider a semilinear plate equation with non-constant material density in the context of energy damping models. Existence and uniqueness of regular and generalized solutions are established. The energy associated to this equation is shown to posses a compressed polynomial decay range.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"188 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability by Polynomial Squeezing for a Class of Energy Damping Plate Models\",\"authors\":\"Flank D. M. Bezerra,&nbsp;Linfang Liu,&nbsp;Vando Narciso\",\"doi\":\"10.1007/s10440-023-00619-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work we consider a semilinear plate equation with non-constant material density in the context of energy damping models. Existence and uniqueness of regular and generalized solutions are established. The energy associated to this equation is shown to posses a compressed polynomial decay range.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-023-00619-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-023-00619-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考虑在能量阻尼模型的背景下具有非恒定材料密度的半线性板方程。建立了正则解和广义解的存在唯一性。与此方程相关的能量显示具有压缩的多项式衰减范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability by Polynomial Squeezing for a Class of Energy Damping Plate Models

In this work we consider a semilinear plate equation with non-constant material density in the context of energy damping models. Existence and uniqueness of regular and generalized solutions are established. The energy associated to this equation is shown to posses a compressed polynomial decay range.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信