{"title":"由近似数定义的算子的Lorentz-Zygmund空间的多样性","authors":"F. Cobos, T. Kühn","doi":"10.1007/s10476-023-0239-x","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the following dichotomy for the spaces <i>ℒ</i><span>\n <sup>(<i>a</i>)</sup><sub><i>p</i>,<i>q</i>,<i>α</i></sub>\n \n </span> (<i>X</i>, <i>Y</i>) of all operators <i>T</i> ∈ <i>ℒ</i>(<i>X</i>, <i>Y</i>) whose approximation numbers belong to the Lorentz-Zygmund sequence spaces <i>ℓ</i><sub><i>p</i>,<i>q</i></sub>(log <i>ℓ</i>)<sub><i>α</i></sub>: If <i>X</i> and <i>Y</i> are <i>infinite-dimensional</i> Banach spaces, then the spaces <i>ℒ</i><span>\n <sup>(<i>a</i>)</sup><sub><i>p</i>,<i>q</i>,<i>α</i></sub>\n \n </span>(<i>X</i>, <i>Y</i>) with 0 < <i>p</i> < ∞, 0 < <i>q</i> ≤ ∞ and <i>α</i> ∈ ℝ are all different from each other, but otherwise, if <i>X</i> or <i>Y</i> are <i>finite-dimensional</i>, they are all equal (to <i>ℒ</i>(<i>X</i>, <i>Y</i>)).</p><p>Moreover we show that the scale <span>\\({\\{ {\\cal L}_{\\infty ,q}^{(a)}(X,Y)\\} _{0\\, < q\\, < \\infty }}\\)</span> is strictly increasing in <i>q</i>, where <i>ℒ</i><span>\n <sup>(<i>a</i>)</sup><sub>∈,<i>q</i></sub>\n \n </span>(<i>X</i>, <i>Y</i>) is the space of all operators in <i>ℒ</i>(<i>X</i>, <i>Y</i>) whose approximation numbers are in the limiting Lorentz sequence space <i>∓</i><sub>∈,<i>q</i></sub>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0239-x.pdf","citationCount":"1","resultStr":"{\"title\":\"Diversity of Lorentz-Zygmund Spaces of Operators Defined by Approximation Numbers\",\"authors\":\"F. Cobos, T. Kühn\",\"doi\":\"10.1007/s10476-023-0239-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove the following dichotomy for the spaces <i>ℒ</i><span>\\n <sup>(<i>a</i>)</sup><sub><i>p</i>,<i>q</i>,<i>α</i></sub>\\n \\n </span> (<i>X</i>, <i>Y</i>) of all operators <i>T</i> ∈ <i>ℒ</i>(<i>X</i>, <i>Y</i>) whose approximation numbers belong to the Lorentz-Zygmund sequence spaces <i>ℓ</i><sub><i>p</i>,<i>q</i></sub>(log <i>ℓ</i>)<sub><i>α</i></sub>: If <i>X</i> and <i>Y</i> are <i>infinite-dimensional</i> Banach spaces, then the spaces <i>ℒ</i><span>\\n <sup>(<i>a</i>)</sup><sub><i>p</i>,<i>q</i>,<i>α</i></sub>\\n \\n </span>(<i>X</i>, <i>Y</i>) with 0 < <i>p</i> < ∞, 0 < <i>q</i> ≤ ∞ and <i>α</i> ∈ ℝ are all different from each other, but otherwise, if <i>X</i> or <i>Y</i> are <i>finite-dimensional</i>, they are all equal (to <i>ℒ</i>(<i>X</i>, <i>Y</i>)).</p><p>Moreover we show that the scale <span>\\\\({\\\\{ {\\\\cal L}_{\\\\infty ,q}^{(a)}(X,Y)\\\\} _{0\\\\, < q\\\\, < \\\\infty }}\\\\)</span> is strictly increasing in <i>q</i>, where <i>ℒ</i><span>\\n <sup>(<i>a</i>)</sup><sub>∈,<i>q</i></sub>\\n \\n </span>(<i>X</i>, <i>Y</i>) is the space of all operators in <i>ℒ</i>(<i>X</i>, <i>Y</i>) whose approximation numbers are in the limiting Lorentz sequence space <i>∓</i><sub>∈,<i>q</i></sub>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-023-0239-x.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0239-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0239-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diversity of Lorentz-Zygmund Spaces of Operators Defined by Approximation Numbers
We prove the following dichotomy for the spaces ℒ(a)p,q,α (X, Y) of all operators T ∈ ℒ(X, Y) whose approximation numbers belong to the Lorentz-Zygmund sequence spaces ℓp,q(log ℓ)α: If X and Y are infinite-dimensional Banach spaces, then the spaces ℒ(a)p,q,α(X, Y) with 0 < p < ∞, 0 < q ≤ ∞ and α ∈ ℝ are all different from each other, but otherwise, if X or Y are finite-dimensional, they are all equal (to ℒ(X, Y)).
Moreover we show that the scale \({\{ {\cal L}_{\infty ,q}^{(a)}(X,Y)\} _{0\, < q\, < \infty }}\) is strictly increasing in q, where ℒ(a)∈,q(X, Y) is the space of all operators in ℒ(X, Y) whose approximation numbers are in the limiting Lorentz sequence space ∓∈,q.