由近似数定义的算子的Lorentz-Zygmund空间的多样性

Pub Date : 2023-10-09 DOI:10.1007/s10476-023-0239-x
F. Cobos, T. Kühn
{"title":"由近似数定义的算子的Lorentz-Zygmund空间的多样性","authors":"F. Cobos,&nbsp;T. Kühn","doi":"10.1007/s10476-023-0239-x","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the following dichotomy for the spaces <i>ℒ</i><span>\n <sup>(<i>a</i>)</sup><sub><i>p</i>,<i>q</i>,<i>α</i></sub>\n \n </span> (<i>X</i>, <i>Y</i>) of all operators <i>T</i> ∈ <i>ℒ</i>(<i>X</i>, <i>Y</i>) whose approximation numbers belong to the Lorentz-Zygmund sequence spaces <i>ℓ</i><sub><i>p</i>,<i>q</i></sub>(log <i>ℓ</i>)<sub><i>α</i></sub>: If <i>X</i> and <i>Y</i> are <i>infinite-dimensional</i> Banach spaces, then the spaces <i>ℒ</i><span>\n <sup>(<i>a</i>)</sup><sub><i>p</i>,<i>q</i>,<i>α</i></sub>\n \n </span>(<i>X</i>, <i>Y</i>) with 0 &lt; <i>p</i> &lt; ∞, 0 &lt; <i>q</i> ≤ ∞ and <i>α</i> ∈ ℝ are all different from each other, but otherwise, if <i>X</i> or <i>Y</i> are <i>finite-dimensional</i>, they are all equal (to <i>ℒ</i>(<i>X</i>, <i>Y</i>)).</p><p>Moreover we show that the scale <span>\\({\\{ {\\cal L}_{\\infty ,q}^{(a)}(X,Y)\\} _{0\\, &lt; q\\, &lt; \\infty }}\\)</span> is strictly increasing in <i>q</i>, where <i>ℒ</i><span>\n <sup>(<i>a</i>)</sup><sub>∈,<i>q</i></sub>\n \n </span>(<i>X</i>, <i>Y</i>) is the space of all operators in <i>ℒ</i>(<i>X</i>, <i>Y</i>) whose approximation numbers are in the limiting Lorentz sequence space <i>∓</i><sub>∈,<i>q</i></sub>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0239-x.pdf","citationCount":"1","resultStr":"{\"title\":\"Diversity of Lorentz-Zygmund Spaces of Operators Defined by Approximation Numbers\",\"authors\":\"F. Cobos,&nbsp;T. Kühn\",\"doi\":\"10.1007/s10476-023-0239-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove the following dichotomy for the spaces <i>ℒ</i><span>\\n <sup>(<i>a</i>)</sup><sub><i>p</i>,<i>q</i>,<i>α</i></sub>\\n \\n </span> (<i>X</i>, <i>Y</i>) of all operators <i>T</i> ∈ <i>ℒ</i>(<i>X</i>, <i>Y</i>) whose approximation numbers belong to the Lorentz-Zygmund sequence spaces <i>ℓ</i><sub><i>p</i>,<i>q</i></sub>(log <i>ℓ</i>)<sub><i>α</i></sub>: If <i>X</i> and <i>Y</i> are <i>infinite-dimensional</i> Banach spaces, then the spaces <i>ℒ</i><span>\\n <sup>(<i>a</i>)</sup><sub><i>p</i>,<i>q</i>,<i>α</i></sub>\\n \\n </span>(<i>X</i>, <i>Y</i>) with 0 &lt; <i>p</i> &lt; ∞, 0 &lt; <i>q</i> ≤ ∞ and <i>α</i> ∈ ℝ are all different from each other, but otherwise, if <i>X</i> or <i>Y</i> are <i>finite-dimensional</i>, they are all equal (to <i>ℒ</i>(<i>X</i>, <i>Y</i>)).</p><p>Moreover we show that the scale <span>\\\\({\\\\{ {\\\\cal L}_{\\\\infty ,q}^{(a)}(X,Y)\\\\} _{0\\\\, &lt; q\\\\, &lt; \\\\infty }}\\\\)</span> is strictly increasing in <i>q</i>, where <i>ℒ</i><span>\\n <sup>(<i>a</i>)</sup><sub>∈,<i>q</i></sub>\\n \\n </span>(<i>X</i>, <i>Y</i>) is the space of all operators in <i>ℒ</i>(<i>X</i>, <i>Y</i>) whose approximation numbers are in the limiting Lorentz sequence space <i>∓</i><sub>∈,<i>q</i></sub>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-023-0239-x.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0239-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0239-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了所有算子T∈≠(X, Y)的近似数属于Lorentz-Zygmund序列空间∑p,∑(log)α的空间∑(a)p,q,α (X, Y)的下列二分法:如果X和Y是无限维的Banach空间,则空间∑(a)p,q,α (X, Y)具有0 &lt;P &lt;∞,0 &lt;q≤∞且α∈∞彼此不同,但如果X或Y是有限维的,则它们都等于(to (X, Y))。进一步证明了尺度\({\{ {\cal L}_{\infty ,q}^{(a)}(X,Y)\} _{0\, < q\, < \infty }}\)在q上是严格递增的,其中,∑(a)∈,q (X, Y)是∑(X, Y)中近似数在极限洛伦兹序列空间上的所有算子的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Diversity of Lorentz-Zygmund Spaces of Operators Defined by Approximation Numbers

We prove the following dichotomy for the spaces (a)p,q,α (X, Y) of all operators T(X, Y) whose approximation numbers belong to the Lorentz-Zygmund sequence spaces p,q(log )α: If X and Y are infinite-dimensional Banach spaces, then the spaces (a)p,q,α (X, Y) with 0 < p < ∞, 0 < q ≤ ∞ and α ∈ ℝ are all different from each other, but otherwise, if X or Y are finite-dimensional, they are all equal (to (X, Y)).

Moreover we show that the scale \({\{ {\cal L}_{\infty ,q}^{(a)}(X,Y)\} _{0\, < q\, < \infty }}\) is strictly increasing in q, where (a)∈,q (X, Y) is the space of all operators in (X, Y) whose approximation numbers are in the limiting Lorentz sequence space ∈,q.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信