{"title":"求解volterra积分代数方程的小波直接法","authors":"S. Sohrabi","doi":"10.1007/s13370-023-01135-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with the numerical solutions for Volterra type integral-algebraic equations (IAEs) via a direct method using Legendre wavelets (LWs). Using the operational matrix associated with Legendre wavelets the problem is transformed to a linear system of algebraic equations. This approach does not use any variable transformations, so all calculations can be easily implemented. Convergence rate and numerical examples are presented to illustrate the efficiency and applicability of the method.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"34 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelets direct method for solving volterra integral-algebraic equations\",\"authors\":\"S. Sohrabi\",\"doi\":\"10.1007/s13370-023-01135-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper deals with the numerical solutions for Volterra type integral-algebraic equations (IAEs) via a direct method using Legendre wavelets (LWs). Using the operational matrix associated with Legendre wavelets the problem is transformed to a linear system of algebraic equations. This approach does not use any variable transformations, so all calculations can be easily implemented. Convergence rate and numerical examples are presented to illustrate the efficiency and applicability of the method.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"34 4\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-023-01135-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01135-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Wavelets direct method for solving volterra integral-algebraic equations
This paper deals with the numerical solutions for Volterra type integral-algebraic equations (IAEs) via a direct method using Legendre wavelets (LWs). Using the operational matrix associated with Legendre wavelets the problem is transformed to a linear system of algebraic equations. This approach does not use any variable transformations, so all calculations can be easily implemented. Convergence rate and numerical examples are presented to illustrate the efficiency and applicability of the method.