求解volterra积分代数方程的小波直接法

IF 0.9 Q2 MATHEMATICS
S. Sohrabi
{"title":"求解volterra积分代数方程的小波直接法","authors":"S. Sohrabi","doi":"10.1007/s13370-023-01135-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with the numerical solutions for Volterra type integral-algebraic equations (IAEs) via a direct method using Legendre wavelets (LWs). Using the operational matrix associated with Legendre wavelets the problem is transformed to a linear system of algebraic equations. This approach does not use any variable transformations, so all calculations can be easily implemented. Convergence rate and numerical examples are presented to illustrate the efficiency and applicability of the method.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelets direct method for solving volterra integral-algebraic equations\",\"authors\":\"S. Sohrabi\",\"doi\":\"10.1007/s13370-023-01135-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper deals with the numerical solutions for Volterra type integral-algebraic equations (IAEs) via a direct method using Legendre wavelets (LWs). Using the operational matrix associated with Legendre wavelets the problem is transformed to a linear system of algebraic equations. This approach does not use any variable transformations, so all calculations can be easily implemented. Convergence rate and numerical examples are presented to illustrate the efficiency and applicability of the method.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-023-01135-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01135-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用勒让德小波直接求解了Volterra型积分代数方程的数值解。利用与勒让德小波相关的运算矩阵,将问题转化为线性代数方程组。这种方法不使用任何变量转换,因此所有的计算都可以很容易地实现。给出了收敛速度和数值算例,说明了该方法的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelets direct method for solving volterra integral-algebraic equations

This paper deals with the numerical solutions for Volterra type integral-algebraic equations (IAEs) via a direct method using Legendre wavelets (LWs). Using the operational matrix associated with Legendre wavelets the problem is transformed to a linear system of algebraic equations. This approach does not use any variable transformations, so all calculations can be easily implemented. Convergence rate and numerical examples are presented to illustrate the efficiency and applicability of the method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信