广义光滑函数空间中的核嵌入与紧嵌入

Pub Date : 2023-10-09 DOI:10.1007/s10476-023-0238-y
D. D. Haroske, H.-G. Leopold, S. D. Moura, L. Skrzypczak
{"title":"广义光滑函数空间中的核嵌入与紧嵌入","authors":"D. D. Haroske,&nbsp;H.-G. Leopold,&nbsp;S. D. Moura,&nbsp;L. Skrzypczak","doi":"10.1007/s10476-023-0238-y","DOIUrl":null,"url":null,"abstract":"<div><p>We study nuclear embeddings for function spaces of generalised smoothness defined on a bounded Lipschitz domain Ω ⊂ ℝ<sup><i>d</i></sup>. This covers, in particular, the well-known situation for spaces of Besov and Triebel–Lizorkin spaces defined on bounded domains as well as some first results for function spaces of logarithmic smoothness. In addition, we provide some new, more general approach to compact embeddings for such function spaces, which also unifies earlier results in different settings, including also the study of their entropy numbers. Again we rely on suitable wavelet decomposition techniques and the famous Tong result (1969) about nuclear diagonal operators acting in <i>∓</i><sub><i>r</i></sub> spaces, which we could recently extend to the vector-valued setting needed here.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0238-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Nuclear and Compact Embeddings in Function Spaces of Generalised Smoothness\",\"authors\":\"D. D. Haroske,&nbsp;H.-G. Leopold,&nbsp;S. D. Moura,&nbsp;L. Skrzypczak\",\"doi\":\"10.1007/s10476-023-0238-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study nuclear embeddings for function spaces of generalised smoothness defined on a bounded Lipschitz domain Ω ⊂ ℝ<sup><i>d</i></sup>. This covers, in particular, the well-known situation for spaces of Besov and Triebel–Lizorkin spaces defined on bounded domains as well as some first results for function spaces of logarithmic smoothness. In addition, we provide some new, more general approach to compact embeddings for such function spaces, which also unifies earlier results in different settings, including also the study of their entropy numbers. Again we rely on suitable wavelet decomposition techniques and the famous Tong result (1969) about nuclear diagonal operators acting in <i>∓</i><sub><i>r</i></sub> spaces, which we could recently extend to the vector-valued setting needed here.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-023-0238-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0238-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0238-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究广义光滑函数空间的核嵌入,该函数空间定义在有界Lipschitz域Ω∧∈d上。这特别涵盖了Besov空间和triiebel - lizorkin空间在有界域上定义的众所周知的情况,以及对数平滑函数空间的一些初步结果。此外,我们提供了一些新的,更一般的方法来压缩嵌入这些函数空间,它也统一了不同设置下的早期结果,包括它们的熵数的研究。我们再次依赖于合适的小波分解技术和著名的Tong结果(1969),该结果是关于作用于可见- r空间的核对角算子的,我们最近可以将其扩展到这里需要的矢量值设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Nuclear and Compact Embeddings in Function Spaces of Generalised Smoothness

We study nuclear embeddings for function spaces of generalised smoothness defined on a bounded Lipschitz domain Ω ⊂ ℝd. This covers, in particular, the well-known situation for spaces of Besov and Triebel–Lizorkin spaces defined on bounded domains as well as some first results for function spaces of logarithmic smoothness. In addition, we provide some new, more general approach to compact embeddings for such function spaces, which also unifies earlier results in different settings, including also the study of their entropy numbers. Again we rely on suitable wavelet decomposition techniques and the famous Tong result (1969) about nuclear diagonal operators acting in r spaces, which we could recently extend to the vector-valued setting needed here.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信