Yanchao Jiang, Qichi Le, Qiyu Liao, Chenglu Hu, Ruizhen Guo, Xiaoqiang Yu, Wenyi Hu
{"title":"镁合金轮毂旋转反挤压过程的仿真研究","authors":"Yanchao Jiang, Qichi Le, Qiyu Liao, Chenglu Hu, Ruizhen Guo, Xiaoqiang Yu, Wenyi Hu","doi":"10.1007/s12289-023-01793-w","DOIUrl":null,"url":null,"abstract":"<div><p>The flow stress model, the dynamic recrystallization (DRX) model, the grain growth (GG) model and the Normalized Cockcroft-Latham (NC-L) ductile fracture criterion are integrated into the finite element (FE) model to simulate the physical field and DRX evolution of the AZ80 magnesium (Mg) alloy wheel forming process by the rotating back extrusion (RBE) process. The deformation behavior of the AZ80 Mg alloy wheel during the forming process is calculated quantitatively when the angular velocity (<span>\\(\\omega\\)</span>) is 0 to 80°/s. Findings revealed that the RBE process increases the deformation heat and effective strain in the forming process of the wheel, and refines the grain size of the whole wheel. However, excessive angular velocity (<span>\\(\\omega\\)</span> > 40°/s) is not conducive to the DRX of the wheel bottom, which makes the grain at the wheel core grow abnormally and reduces the uniformity of the microstructure distribution at the wheel bottom. The damage factor value at the upper rim increases with the increase in <span>\\(\\omega\\)</span>, i.e., the tendency of the upper rim to crack increases. Therefore, the <span>\\(\\omega\\)</span> of the Mg alloy wheel produced by the RBE process within the scope of this study should be set at 40°/s. The RBE process of the Mg alloy wheel can provide a new idea for the plastic forming of Mg alloy wheels.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation research on the rotating back extrusion process for magnesium alloy wheel\",\"authors\":\"Yanchao Jiang, Qichi Le, Qiyu Liao, Chenglu Hu, Ruizhen Guo, Xiaoqiang Yu, Wenyi Hu\",\"doi\":\"10.1007/s12289-023-01793-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The flow stress model, the dynamic recrystallization (DRX) model, the grain growth (GG) model and the Normalized Cockcroft-Latham (NC-L) ductile fracture criterion are integrated into the finite element (FE) model to simulate the physical field and DRX evolution of the AZ80 magnesium (Mg) alloy wheel forming process by the rotating back extrusion (RBE) process. The deformation behavior of the AZ80 Mg alloy wheel during the forming process is calculated quantitatively when the angular velocity (<span>\\\\(\\\\omega\\\\)</span>) is 0 to 80°/s. Findings revealed that the RBE process increases the deformation heat and effective strain in the forming process of the wheel, and refines the grain size of the whole wheel. However, excessive angular velocity (<span>\\\\(\\\\omega\\\\)</span> > 40°/s) is not conducive to the DRX of the wheel bottom, which makes the grain at the wheel core grow abnormally and reduces the uniformity of the microstructure distribution at the wheel bottom. The damage factor value at the upper rim increases with the increase in <span>\\\\(\\\\omega\\\\)</span>, i.e., the tendency of the upper rim to crack increases. Therefore, the <span>\\\\(\\\\omega\\\\)</span> of the Mg alloy wheel produced by the RBE process within the scope of this study should be set at 40°/s. The RBE process of the Mg alloy wheel can provide a new idea for the plastic forming of Mg alloy wheels.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-023-01793-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01793-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Simulation research on the rotating back extrusion process for magnesium alloy wheel
The flow stress model, the dynamic recrystallization (DRX) model, the grain growth (GG) model and the Normalized Cockcroft-Latham (NC-L) ductile fracture criterion are integrated into the finite element (FE) model to simulate the physical field and DRX evolution of the AZ80 magnesium (Mg) alloy wheel forming process by the rotating back extrusion (RBE) process. The deformation behavior of the AZ80 Mg alloy wheel during the forming process is calculated quantitatively when the angular velocity (\(\omega\)) is 0 to 80°/s. Findings revealed that the RBE process increases the deformation heat and effective strain in the forming process of the wheel, and refines the grain size of the whole wheel. However, excessive angular velocity (\(\omega\) > 40°/s) is not conducive to the DRX of the wheel bottom, which makes the grain at the wheel core grow abnormally and reduces the uniformity of the microstructure distribution at the wheel bottom. The damage factor value at the upper rim increases with the increase in \(\omega\), i.e., the tendency of the upper rim to crack increases. Therefore, the \(\omega\) of the Mg alloy wheel produced by the RBE process within the scope of this study should be set at 40°/s. The RBE process of the Mg alloy wheel can provide a new idea for the plastic forming of Mg alloy wheels.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.