{"title":"二维和三维多边形曲线的逼近","authors":"Eu D., Toussaint G.T.","doi":"10.1006/cgip.1994.1021","DOIUrl":null,"url":null,"abstract":"<div><p>Given a polygonal curve <em>P</em> =[<em>p</em><sub>1</sub>, <em>p</em><sub>2</sub>, . . . , <em>p</em><sub><em>n</em></sub>], the polygonal approximation problem considered calls for determining a new curve <em>P</em>′ = [<em>p</em>′<sub>1</sub>, <em>p</em>′<sub>2</sub>, . . . , <em>p</em>′<sub><em>m</em></sub>] such that (i) <em>m</em> is significantly smaller than <em>n</em>, (ii) the vertices of <em>P</em>′ are an ordered subset of the vertices of <em>P</em>, and (iii) any line segment [<em>p</em>′<sub><em>A</em></sub>, <em>p</em>′<sub><em>A</em> + 1</sub> of <em>P</em>′ that substitutes a chain [<em>p</em><sub><em>B</em></sub>, . . . , <em>p</em><sub><em>C</em></sub>] in <em>P</em> is such that for all <em>i</em> where <em>B</em> ≤ <em>i</em> ≤ <em>C</em>, the approximation error of <em>p</em><sub><em>i</em></sub> with respect to [<em>p</em>′<sub><em>A</em></sub>, <em>p</em>′<sub><em>A</em> + 1</sub>], according to some specified criterion and metric, is less than a predetermined error tolerance. Using the <em>parallel-strip</em> error criterion, we study the following problems for a curve <em>P</em> in <em>R</em><sup><em>d</em></sup>, where <em>d</em> = 2, 3: (i) minimize <em>m</em> for a given error tolerance and (ii) given <em>m</em>, find the curve <em>P</em>′ that has the minimum approximation error over all curves that have at most <em>m</em> vertices. These problems are called the min-# and min-ϵ problems, respectively. For <em>R</em><sup>2</sup> and with any one of the <em>L</em><sub>1</sub>, <em>L</em><sub>2</sub>, or <em>L</em><sub>∞</sub> distance metrics, we give algorithms to solve the min-# problem in <em>O</em>(<em>n</em><sup>2</sup>) time and the min-ϵ problem in <em>O</em>(<em>n</em><sup>2</sup> log <em>n</em>) time, improving the best known algorithms to date by a factor of log <em>n</em>. When <em>P</em> is a polygonal curve in <em>R</em><sup>3</sup> that is strictly monotone with respect to one of the three axes, we show that if the <em>L</em><sub>1</sub> and <em>L</em><sub>∞</sub> metrics are used then the min-# problem can be solved in <em>O</em>(<em>n</em><sup>2</sup>) time and the min-ϵ problem can be solved in <em>O</em>(<em>n</em><sup>3</sup>) time. If distances are computed using the <em>L</em><sub>2</sub> metric then the min-# and min-ϵ problems can be solved in <em>O</em>(<em>n</em><sup>3</sup>) and <em>O</em>(<em>n</em><sup>3</sup> log <em>n</em>) time, respectively. All of our algorithms exhibit <em>O</em>(<em>n</em><sup>2</sup>) space complexity. Finally, we show that if it is not essential to minimize <em>m</em>, simple modifications of our algorithms afford a reduction by a factor of <em>n</em> for both time and space.</p></div>","PeriodicalId":100349,"journal":{"name":"CVGIP: Graphical Models and Image Processing","volume":"56 3","pages":"Pages 231-246"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/cgip.1994.1021","citationCount":"0","resultStr":"{\"title\":\"On Approximating Polygonal Curves in Two and Three Dimensions\",\"authors\":\"Eu D., Toussaint G.T.\",\"doi\":\"10.1006/cgip.1994.1021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a polygonal curve <em>P</em> =[<em>p</em><sub>1</sub>, <em>p</em><sub>2</sub>, . . . , <em>p</em><sub><em>n</em></sub>], the polygonal approximation problem considered calls for determining a new curve <em>P</em>′ = [<em>p</em>′<sub>1</sub>, <em>p</em>′<sub>2</sub>, . . . , <em>p</em>′<sub><em>m</em></sub>] such that (i) <em>m</em> is significantly smaller than <em>n</em>, (ii) the vertices of <em>P</em>′ are an ordered subset of the vertices of <em>P</em>, and (iii) any line segment [<em>p</em>′<sub><em>A</em></sub>, <em>p</em>′<sub><em>A</em> + 1</sub> of <em>P</em>′ that substitutes a chain [<em>p</em><sub><em>B</em></sub>, . . . , <em>p</em><sub><em>C</em></sub>] in <em>P</em> is such that for all <em>i</em> where <em>B</em> ≤ <em>i</em> ≤ <em>C</em>, the approximation error of <em>p</em><sub><em>i</em></sub> with respect to [<em>p</em>′<sub><em>A</em></sub>, <em>p</em>′<sub><em>A</em> + 1</sub>], according to some specified criterion and metric, is less than a predetermined error tolerance. Using the <em>parallel-strip</em> error criterion, we study the following problems for a curve <em>P</em> in <em>R</em><sup><em>d</em></sup>, where <em>d</em> = 2, 3: (i) minimize <em>m</em> for a given error tolerance and (ii) given <em>m</em>, find the curve <em>P</em>′ that has the minimum approximation error over all curves that have at most <em>m</em> vertices. These problems are called the min-# and min-ϵ problems, respectively. For <em>R</em><sup>2</sup> and with any one of the <em>L</em><sub>1</sub>, <em>L</em><sub>2</sub>, or <em>L</em><sub>∞</sub> distance metrics, we give algorithms to solve the min-# problem in <em>O</em>(<em>n</em><sup>2</sup>) time and the min-ϵ problem in <em>O</em>(<em>n</em><sup>2</sup> log <em>n</em>) time, improving the best known algorithms to date by a factor of log <em>n</em>. When <em>P</em> is a polygonal curve in <em>R</em><sup>3</sup> that is strictly monotone with respect to one of the three axes, we show that if the <em>L</em><sub>1</sub> and <em>L</em><sub>∞</sub> metrics are used then the min-# problem can be solved in <em>O</em>(<em>n</em><sup>2</sup>) time and the min-ϵ problem can be solved in <em>O</em>(<em>n</em><sup>3</sup>) time. If distances are computed using the <em>L</em><sub>2</sub> metric then the min-# and min-ϵ problems can be solved in <em>O</em>(<em>n</em><sup>3</sup>) and <em>O</em>(<em>n</em><sup>3</sup> log <em>n</em>) time, respectively. All of our algorithms exhibit <em>O</em>(<em>n</em><sup>2</sup>) space complexity. Finally, we show that if it is not essential to minimize <em>m</em>, simple modifications of our algorithms afford a reduction by a factor of <em>n</em> for both time and space.</p></div>\",\"PeriodicalId\":100349,\"journal\":{\"name\":\"CVGIP: Graphical Models and Image Processing\",\"volume\":\"56 3\",\"pages\":\"Pages 231-246\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/cgip.1994.1021\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CVGIP: Graphical Models and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1049965284710212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVGIP: Graphical Models and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049965284710212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
给定一条多边形曲线P =[p1, p2,…], pn],所考虑的多边形逼近问题要求确定一条新曲线P ' = [P ' 1, P ' 2,…], p ' m]使得(i) m明显小于n, (ii) p '的顶点是p '顶点的有序子集,以及(iii) p '的任何线段[p ' a, p ' a + 1]替代链[pB,…]。, P中的pC]是这样的:对于所有i,当B≤i≤C时,pi对[P 'A, P 'A + 1]的近似误差,根据某种规定的准则和度量,小于预定的误差容限。利用平行条形误差准则,我们研究了d = 2,3的曲线P的下列问题:(i)对于给定的误差容限最小化m, (ii)给定m,在所有顶点最多为m的曲线上找到具有最小近似误差的曲线P '。这些问题分别被称为min-#和min- λ问题。R2和任何一个L1, L2,或L∞距离度量,给出算法解决min - #问题在O (n2)时间和min -ϵ问题O (n2 O (log n))时间,改善最著名的算法迄今为止log n倍。当P是一个多边形曲线在R3严格单调的三个轴,我们表明,如果L1和L∞指标使用min - #的问题可以解决在O (n2)时间和min -ϵ问题可以解决在O (n3)时间。如果使用L2度量来计算距离,那么min-#和min- λ问题可以分别在O(n3)和O(n3 log n)时间内解决。我们所有的算法都表现出O(n2)的空间复杂度。最后,我们表明,如果m不是必须最小化的,我们的算法的简单修改可以在时间和空间上减少n个因子。
On Approximating Polygonal Curves in Two and Three Dimensions
Given a polygonal curve P =[p1, p2, . . . , pn], the polygonal approximation problem considered calls for determining a new curve P′ = [p′1, p′2, . . . , p′m] such that (i) m is significantly smaller than n, (ii) the vertices of P′ are an ordered subset of the vertices of P, and (iii) any line segment [p′A, p′A + 1 of P′ that substitutes a chain [pB, . . . , pC] in P is such that for all i where B ≤ i ≤ C, the approximation error of pi with respect to [p′A, p′A + 1], according to some specified criterion and metric, is less than a predetermined error tolerance. Using the parallel-strip error criterion, we study the following problems for a curve P in Rd, where d = 2, 3: (i) minimize m for a given error tolerance and (ii) given m, find the curve P′ that has the minimum approximation error over all curves that have at most m vertices. These problems are called the min-# and min-ϵ problems, respectively. For R2 and with any one of the L1, L2, or L∞ distance metrics, we give algorithms to solve the min-# problem in O(n2) time and the min-ϵ problem in O(n2 log n) time, improving the best known algorithms to date by a factor of log n. When P is a polygonal curve in R3 that is strictly monotone with respect to one of the three axes, we show that if the L1 and L∞ metrics are used then the min-# problem can be solved in O(n2) time and the min-ϵ problem can be solved in O(n3) time. If distances are computed using the L2 metric then the min-# and min-ϵ problems can be solved in O(n3) and O(n3 log n) time, respectively. All of our algorithms exhibit O(n2) space complexity. Finally, we show that if it is not essential to minimize m, simple modifications of our algorithms afford a reduction by a factor of n for both time and space.