利用GEDI照片和森林变化图评估森林恢复的计算工具

IF 5.7 Q1 ENVIRONMENTAL SCIENCES
Amelia Holcomb, Simon V. Mathis, David A. Coomes, Srinivasan Keshav
{"title":"利用GEDI照片和森林变化图评估森林恢复的计算工具","authors":"Amelia Holcomb,&nbsp;Simon V. Mathis,&nbsp;David A. Coomes,&nbsp;Srinivasan Keshav","doi":"10.1016/j.srs.2023.100106","DOIUrl":null,"url":null,"abstract":"<div><p>Tropical secondary forests are ecosystems of critical importance for protecting biodiversity, buffering primary forest loss, and sequestering atmospheric carbon. Monitoring growth and carbon sequestration in secondary forests is difficult, with inventory plots sampling <span><math><mo>&lt;</mo><mn>0.001</mn><mi>%</mi></math></span> of secondary forests. The Global Ecosystem Dynamics Investigation (GEDI), a space-borne LiDAR sampler, provides billions of aboveground carbon density (ACD) estimates across the tropics. We fuse these carbon density estimates with a time series of forest change maps to identify their age since last deforestation and thus estimate the average rate of carbon sequestration in secondary forests across the Amazon biome. To our knowledge, this is the first estimate of these rates made using the new GEDI dataset. Moreover, this paper addresses key statistical and computational challenges of GEDI data fusion and analysis. We propagate both GEDI ACD and geolocation uncertainty to the regrowth rate estimate through a Monte Carlo approach, and we handle heteroskedasticity, outliers, and spatial autocorrelation using robust statistical methods. The large size of the GEDI dataset combined with the proposed Monte Carlo bootstrap can be highly computationally intensive, with a naive implementation taking over a month to complete. Nevertheless, we demonstrate the feasibility of our method by developing optimized open-source code that performs this computation on the 151 million quality-filtered GEDI shots available for the Amazon biome from April 2019–August 2021 in under 25 min in benchmark tests. By resolving these statistical and computational challenges with an efficient open-source pipeline, we create a standard approach that can be used more broadly in any work seeking to combine the GEDI dataset with high-resolution classification maps. Using this approach, we identify approximately 23, 000 GEDI samples of regrowing forest at least 60 m × 60 m wide across the Amazon biome and estimate a carbon sequestration rate of 1.86 MgC/ha/yr with a 95% empirical confidence interval of 1.75–1.97 MgC/ha/yr, with rates varying from 1.27 to 1.99 MgC/ha/yr across smaller subregions.</p></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"8 ","pages":"Article 100106"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666017223000317/pdfft?md5=c204d42ed35e17b3f90e3691a0597edf&pid=1-s2.0-S2666017223000317-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Computational tools for assessing forest recovery with GEDI shots and forest change maps\",\"authors\":\"Amelia Holcomb,&nbsp;Simon V. Mathis,&nbsp;David A. Coomes,&nbsp;Srinivasan Keshav\",\"doi\":\"10.1016/j.srs.2023.100106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tropical secondary forests are ecosystems of critical importance for protecting biodiversity, buffering primary forest loss, and sequestering atmospheric carbon. Monitoring growth and carbon sequestration in secondary forests is difficult, with inventory plots sampling <span><math><mo>&lt;</mo><mn>0.001</mn><mi>%</mi></math></span> of secondary forests. The Global Ecosystem Dynamics Investigation (GEDI), a space-borne LiDAR sampler, provides billions of aboveground carbon density (ACD) estimates across the tropics. We fuse these carbon density estimates with a time series of forest change maps to identify their age since last deforestation and thus estimate the average rate of carbon sequestration in secondary forests across the Amazon biome. To our knowledge, this is the first estimate of these rates made using the new GEDI dataset. Moreover, this paper addresses key statistical and computational challenges of GEDI data fusion and analysis. We propagate both GEDI ACD and geolocation uncertainty to the regrowth rate estimate through a Monte Carlo approach, and we handle heteroskedasticity, outliers, and spatial autocorrelation using robust statistical methods. The large size of the GEDI dataset combined with the proposed Monte Carlo bootstrap can be highly computationally intensive, with a naive implementation taking over a month to complete. Nevertheless, we demonstrate the feasibility of our method by developing optimized open-source code that performs this computation on the 151 million quality-filtered GEDI shots available for the Amazon biome from April 2019–August 2021 in under 25 min in benchmark tests. By resolving these statistical and computational challenges with an efficient open-source pipeline, we create a standard approach that can be used more broadly in any work seeking to combine the GEDI dataset with high-resolution classification maps. Using this approach, we identify approximately 23, 000 GEDI samples of regrowing forest at least 60 m × 60 m wide across the Amazon biome and estimate a carbon sequestration rate of 1.86 MgC/ha/yr with a 95% empirical confidence interval of 1.75–1.97 MgC/ha/yr, with rates varying from 1.27 to 1.99 MgC/ha/yr across smaller subregions.</p></div>\",\"PeriodicalId\":101147,\"journal\":{\"name\":\"Science of Remote Sensing\",\"volume\":\"8 \",\"pages\":\"Article 100106\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666017223000317/pdfft?md5=c204d42ed35e17b3f90e3691a0597edf&pid=1-s2.0-S2666017223000317-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666017223000317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017223000317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

热带次生林是一种生态系统,对保护生物多样性、缓冲原生林损失和封存大气碳具有至关重要的作用。监测次生林的生长和碳固存是困难的,清查样地抽样了次生林的0.001%。全球生态系统动力学调查(GEDI)是一种星载激光雷达采样器,提供了数十亿个热带地区的地面碳密度(ACD)估计值。我们将这些碳密度估计值与森林变化的时间序列相结合,以确定自上次森林砍伐以来的年龄,从而估计整个亚马逊生物群系次生林的平均碳固存率。据我们所知,这是使用新的GEDI数据集对这些速率的首次估计。此外,本文还讨论了GEDI数据融合与分析的关键统计和计算挑战。我们通过蒙特卡罗方法将GEDI ACD和地理位置不确定性传播到再生长率估计中,并使用稳健的统计方法处理异方差、异常值和空间自相关。大型的GEDI数据集与所建议的蒙特卡罗引导相结合,可能会产生高度的计算密集型,一个简单的实现需要一个多月的时间才能完成。尽管如此,我们通过开发优化的开源代码来证明我们方法的可行性,该代码在基准测试中在25分钟内对2019年4月至2021年8月期间可用于亚马逊生物群系的1.51亿个经过质量过滤的GEDI镜头执行此计算。通过使用高效的开源管道解决这些统计和计算方面的挑战,我们创建了一种标准方法,可以更广泛地用于任何寻求将GEDI数据集与高分辨率分类地图相结合的工作。利用这种方法,我们确定了亚马逊生物群落中至少60 m × 60 m宽的再生森林的约23,000个GEDI样本,并估计碳固存率为1.86 MgC/ha/年,95%的经验置信区间为1.75-1.97 MgC/ha/年,在较小的子区域中,碳固存率为1.27 - 1.99 MgC/ha/年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational tools for assessing forest recovery with GEDI shots and forest change maps

Tropical secondary forests are ecosystems of critical importance for protecting biodiversity, buffering primary forest loss, and sequestering atmospheric carbon. Monitoring growth and carbon sequestration in secondary forests is difficult, with inventory plots sampling <0.001% of secondary forests. The Global Ecosystem Dynamics Investigation (GEDI), a space-borne LiDAR sampler, provides billions of aboveground carbon density (ACD) estimates across the tropics. We fuse these carbon density estimates with a time series of forest change maps to identify their age since last deforestation and thus estimate the average rate of carbon sequestration in secondary forests across the Amazon biome. To our knowledge, this is the first estimate of these rates made using the new GEDI dataset. Moreover, this paper addresses key statistical and computational challenges of GEDI data fusion and analysis. We propagate both GEDI ACD and geolocation uncertainty to the regrowth rate estimate through a Monte Carlo approach, and we handle heteroskedasticity, outliers, and spatial autocorrelation using robust statistical methods. The large size of the GEDI dataset combined with the proposed Monte Carlo bootstrap can be highly computationally intensive, with a naive implementation taking over a month to complete. Nevertheless, we demonstrate the feasibility of our method by developing optimized open-source code that performs this computation on the 151 million quality-filtered GEDI shots available for the Amazon biome from April 2019–August 2021 in under 25 min in benchmark tests. By resolving these statistical and computational challenges with an efficient open-source pipeline, we create a standard approach that can be used more broadly in any work seeking to combine the GEDI dataset with high-resolution classification maps. Using this approach, we identify approximately 23, 000 GEDI samples of regrowing forest at least 60 m × 60 m wide across the Amazon biome and estimate a carbon sequestration rate of 1.86 MgC/ha/yr with a 95% empirical confidence interval of 1.75–1.97 MgC/ha/yr, with rates varying from 1.27 to 1.99 MgC/ha/yr across smaller subregions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信