SinkholeNet:一种新的RGB-slope天坑数据集和用于天坑分类和定位的深度弱监督学习框架

IF 3.7 3区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Amir Yavariabdi , Huseyin Kusetogullari , Osman Orhan , Esra Uray , Vahdettin Demir , Turgay Celik , Engin Mendi
{"title":"SinkholeNet:一种新的RGB-slope天坑数据集和用于天坑分类和定位的深度弱监督学习框架","authors":"Amir Yavariabdi ,&nbsp;Huseyin Kusetogullari ,&nbsp;Osman Orhan ,&nbsp;Esra Uray ,&nbsp;Vahdettin Demir ,&nbsp;Turgay Celik ,&nbsp;Engin Mendi","doi":"10.1016/j.ejrs.2023.10.006","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel multimodal deep weakly-supervised learning framework, SinkholeNet, to classify and localize sinkhole(s) in high-resolution RGB-slope aerial images. The SinkholeNet first employs a multimodal Convolutional Neural Network (CNN) architecture that simultaneously extracts features from the input RGB image and ground slope map and then fuses the extracted features. It then uses an improved ShuffleNet architecture on the fused features to classify patches as sinkholes or non-sinkholes. Finally, the last extracted feature maps, belonging to the sinkhole class, are used as input of gradient-weighted class activation mapping (Grad-CAM) to localize sinkhole(s) in a weakly-supervised setting. The proposed weakly-supervised framework intends to increase the available labeled data for training and decrease the cost of human annotation. We also introduce a novel publicly available weakly labeled sinkhole dataset comprising RGB-slope paired image patches to support reproducible research. The experimental results on the newly introduced dataset show that the SinkholeNet outperforms the other methods considered in this paper both for sinkhole classification and localization.</p></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"26 4","pages":"Pages 966-973"},"PeriodicalIF":3.7000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110982323000881/pdfft?md5=15e3c8612c60e95142a73df87496c65e&pid=1-s2.0-S1110982323000881-main.pdf","citationCount":"0","resultStr":"{\"title\":\"SinkholeNet: A novel RGB-slope sinkhole dataset and deep weakly-supervised learning framework for sinkhole classification and localization\",\"authors\":\"Amir Yavariabdi ,&nbsp;Huseyin Kusetogullari ,&nbsp;Osman Orhan ,&nbsp;Esra Uray ,&nbsp;Vahdettin Demir ,&nbsp;Turgay Celik ,&nbsp;Engin Mendi\",\"doi\":\"10.1016/j.ejrs.2023.10.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a novel multimodal deep weakly-supervised learning framework, SinkholeNet, to classify and localize sinkhole(s) in high-resolution RGB-slope aerial images. The SinkholeNet first employs a multimodal Convolutional Neural Network (CNN) architecture that simultaneously extracts features from the input RGB image and ground slope map and then fuses the extracted features. It then uses an improved ShuffleNet architecture on the fused features to classify patches as sinkholes or non-sinkholes. Finally, the last extracted feature maps, belonging to the sinkhole class, are used as input of gradient-weighted class activation mapping (Grad-CAM) to localize sinkhole(s) in a weakly-supervised setting. The proposed weakly-supervised framework intends to increase the available labeled data for training and decrease the cost of human annotation. We also introduce a novel publicly available weakly labeled sinkhole dataset comprising RGB-slope paired image patches to support reproducible research. The experimental results on the newly introduced dataset show that the SinkholeNet outperforms the other methods considered in this paper both for sinkhole classification and localization.</p></div>\",\"PeriodicalId\":48539,\"journal\":{\"name\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"volume\":\"26 4\",\"pages\":\"Pages 966-973\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1110982323000881/pdfft?md5=15e3c8612c60e95142a73df87496c65e&pid=1-s2.0-S1110982323000881-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110982323000881\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982323000881","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的多模态深度弱监督学习框架——SinkholeNet,用于对高分辨率rgb坡度航拍图像中的天坑进行分类和定位。SinkholeNet首先采用多模态卷积神经网络(CNN)架构,同时从输入的RGB图像和地面坡度图中提取特征,然后融合提取的特征。然后在融合特征上使用改进的ShuffleNet架构将补丁分类为天坑或非天坑。最后,将最后提取的天坑类特征图作为梯度加权类激活映射(Grad-CAM)的输入,在弱监督环境下对天坑进行定位。提出的弱监督框架旨在增加可用于训练的标记数据,并降低人工注释的成本。我们还引入了一个新的公开可用的弱标记天坑数据集,包括rgb斜率配对图像补丁,以支持可重复的研究。在新引入的数据集上的实验结果表明,SinkholeNet在天坑分类和定位方面都优于本文所考虑的其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SinkholeNet: A novel RGB-slope sinkhole dataset and deep weakly-supervised learning framework for sinkhole classification and localization

This paper proposes a novel multimodal deep weakly-supervised learning framework, SinkholeNet, to classify and localize sinkhole(s) in high-resolution RGB-slope aerial images. The SinkholeNet first employs a multimodal Convolutional Neural Network (CNN) architecture that simultaneously extracts features from the input RGB image and ground slope map and then fuses the extracted features. It then uses an improved ShuffleNet architecture on the fused features to classify patches as sinkholes or non-sinkholes. Finally, the last extracted feature maps, belonging to the sinkhole class, are used as input of gradient-weighted class activation mapping (Grad-CAM) to localize sinkhole(s) in a weakly-supervised setting. The proposed weakly-supervised framework intends to increase the available labeled data for training and decrease the cost of human annotation. We also introduce a novel publicly available weakly labeled sinkhole dataset comprising RGB-slope paired image patches to support reproducible research. The experimental results on the newly introduced dataset show that the SinkholeNet outperforms the other methods considered in this paper both for sinkhole classification and localization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
85
审稿时长
48 weeks
期刊介绍: The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信