Amir Yavariabdi , Huseyin Kusetogullari , Osman Orhan , Esra Uray , Vahdettin Demir , Turgay Celik , Engin Mendi
{"title":"SinkholeNet:一种新的RGB-slope天坑数据集和用于天坑分类和定位的深度弱监督学习框架","authors":"Amir Yavariabdi , Huseyin Kusetogullari , Osman Orhan , Esra Uray , Vahdettin Demir , Turgay Celik , Engin Mendi","doi":"10.1016/j.ejrs.2023.10.006","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel multimodal deep weakly-supervised learning framework, SinkholeNet, to classify and localize sinkhole(s) in high-resolution RGB-slope aerial images. The SinkholeNet first employs a multimodal Convolutional Neural Network (CNN) architecture that simultaneously extracts features from the input RGB image and ground slope map and then fuses the extracted features. It then uses an improved ShuffleNet architecture on the fused features to classify patches as sinkholes or non-sinkholes. Finally, the last extracted feature maps, belonging to the sinkhole class, are used as input of gradient-weighted class activation mapping (Grad-CAM) to localize sinkhole(s) in a weakly-supervised setting. The proposed weakly-supervised framework intends to increase the available labeled data for training and decrease the cost of human annotation. We also introduce a novel publicly available weakly labeled sinkhole dataset comprising RGB-slope paired image patches to support reproducible research. The experimental results on the newly introduced dataset show that the SinkholeNet outperforms the other methods considered in this paper both for sinkhole classification and localization.</p></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"26 4","pages":"Pages 966-973"},"PeriodicalIF":3.7000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110982323000881/pdfft?md5=15e3c8612c60e95142a73df87496c65e&pid=1-s2.0-S1110982323000881-main.pdf","citationCount":"0","resultStr":"{\"title\":\"SinkholeNet: A novel RGB-slope sinkhole dataset and deep weakly-supervised learning framework for sinkhole classification and localization\",\"authors\":\"Amir Yavariabdi , Huseyin Kusetogullari , Osman Orhan , Esra Uray , Vahdettin Demir , Turgay Celik , Engin Mendi\",\"doi\":\"10.1016/j.ejrs.2023.10.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a novel multimodal deep weakly-supervised learning framework, SinkholeNet, to classify and localize sinkhole(s) in high-resolution RGB-slope aerial images. The SinkholeNet first employs a multimodal Convolutional Neural Network (CNN) architecture that simultaneously extracts features from the input RGB image and ground slope map and then fuses the extracted features. It then uses an improved ShuffleNet architecture on the fused features to classify patches as sinkholes or non-sinkholes. Finally, the last extracted feature maps, belonging to the sinkhole class, are used as input of gradient-weighted class activation mapping (Grad-CAM) to localize sinkhole(s) in a weakly-supervised setting. The proposed weakly-supervised framework intends to increase the available labeled data for training and decrease the cost of human annotation. We also introduce a novel publicly available weakly labeled sinkhole dataset comprising RGB-slope paired image patches to support reproducible research. The experimental results on the newly introduced dataset show that the SinkholeNet outperforms the other methods considered in this paper both for sinkhole classification and localization.</p></div>\",\"PeriodicalId\":48539,\"journal\":{\"name\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"volume\":\"26 4\",\"pages\":\"Pages 966-973\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1110982323000881/pdfft?md5=15e3c8612c60e95142a73df87496c65e&pid=1-s2.0-S1110982323000881-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110982323000881\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982323000881","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
SinkholeNet: A novel RGB-slope sinkhole dataset and deep weakly-supervised learning framework for sinkhole classification and localization
This paper proposes a novel multimodal deep weakly-supervised learning framework, SinkholeNet, to classify and localize sinkhole(s) in high-resolution RGB-slope aerial images. The SinkholeNet first employs a multimodal Convolutional Neural Network (CNN) architecture that simultaneously extracts features from the input RGB image and ground slope map and then fuses the extracted features. It then uses an improved ShuffleNet architecture on the fused features to classify patches as sinkholes or non-sinkholes. Finally, the last extracted feature maps, belonging to the sinkhole class, are used as input of gradient-weighted class activation mapping (Grad-CAM) to localize sinkhole(s) in a weakly-supervised setting. The proposed weakly-supervised framework intends to increase the available labeled data for training and decrease the cost of human annotation. We also introduce a novel publicly available weakly labeled sinkhole dataset comprising RGB-slope paired image patches to support reproducible research. The experimental results on the newly introduced dataset show that the SinkholeNet outperforms the other methods considered in this paper both for sinkhole classification and localization.
期刊介绍:
The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.