{"title":"数据驱动LQ控制的封闭形式和鲁棒表达式","authors":"Federico Celi , Giacomo Baggio , Fabio Pasqualetti","doi":"10.1016/j.arcontrol.2023.100916","DOIUrl":null,"url":null,"abstract":"<div><p>This article provides an overview of certain direct data-driven control results, where control sequences are computed from (noisy) data collected during offline control experiments without an explicit identification of the system dynamics. For the case of noiseless datasets, we derive several closed-form data-driven expressions that solve a variety of optimal control problems for linear systems with quadratic cost functions of the state and input (including the linear quadratic regulator problem, the minimum energy control problem, and the linear quadratic control problem with terminal constraints), discuss their advantages and drawbacks with respect to alternative data-driven and model-based approaches, and showcase their effectiveness through a number of numerical studies. Interestingly, these results provide an alternative and explicit way of solving classic control problems that, for instance, does not require the solution of an implicit and recursive Riccati equation as in the model-based setting. For the case of noisy datasets, we show how the closed-form expressions derived in the noiseless setting can be modified to compensate for the bias induced by noise, and perform a sensitivity analysis to reveal favorable asymptotic robustness properties of the derived data-driven controls. We conclude the paper with some considerations and a discussion of outstanding questions and directions of future investigation.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"56 ","pages":"Article 100916"},"PeriodicalIF":7.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367578823000809/pdfft?md5=463fb3655a95addad737fb886b7dcabc&pid=1-s2.0-S1367578823000809-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Closed-form and robust expressions for data-driven LQ control\",\"authors\":\"Federico Celi , Giacomo Baggio , Fabio Pasqualetti\",\"doi\":\"10.1016/j.arcontrol.2023.100916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article provides an overview of certain direct data-driven control results, where control sequences are computed from (noisy) data collected during offline control experiments without an explicit identification of the system dynamics. For the case of noiseless datasets, we derive several closed-form data-driven expressions that solve a variety of optimal control problems for linear systems with quadratic cost functions of the state and input (including the linear quadratic regulator problem, the minimum energy control problem, and the linear quadratic control problem with terminal constraints), discuss their advantages and drawbacks with respect to alternative data-driven and model-based approaches, and showcase their effectiveness through a number of numerical studies. Interestingly, these results provide an alternative and explicit way of solving classic control problems that, for instance, does not require the solution of an implicit and recursive Riccati equation as in the model-based setting. For the case of noisy datasets, we show how the closed-form expressions derived in the noiseless setting can be modified to compensate for the bias induced by noise, and perform a sensitivity analysis to reveal favorable asymptotic robustness properties of the derived data-driven controls. We conclude the paper with some considerations and a discussion of outstanding questions and directions of future investigation.</p></div>\",\"PeriodicalId\":50750,\"journal\":{\"name\":\"Annual Reviews in Control\",\"volume\":\"56 \",\"pages\":\"Article 100916\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1367578823000809/pdfft?md5=463fb3655a95addad737fb886b7dcabc&pid=1-s2.0-S1367578823000809-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reviews in Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367578823000809\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367578823000809","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Closed-form and robust expressions for data-driven LQ control
This article provides an overview of certain direct data-driven control results, where control sequences are computed from (noisy) data collected during offline control experiments without an explicit identification of the system dynamics. For the case of noiseless datasets, we derive several closed-form data-driven expressions that solve a variety of optimal control problems for linear systems with quadratic cost functions of the state and input (including the linear quadratic regulator problem, the minimum energy control problem, and the linear quadratic control problem with terminal constraints), discuss their advantages and drawbacks with respect to alternative data-driven and model-based approaches, and showcase their effectiveness through a number of numerical studies. Interestingly, these results provide an alternative and explicit way of solving classic control problems that, for instance, does not require the solution of an implicit and recursive Riccati equation as in the model-based setting. For the case of noisy datasets, we show how the closed-form expressions derived in the noiseless setting can be modified to compensate for the bias induced by noise, and perform a sensitivity analysis to reveal favorable asymptotic robustness properties of the derived data-driven controls. We conclude the paper with some considerations and a discussion of outstanding questions and directions of future investigation.
期刊介绍:
The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles:
Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected.
Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and
Tutorial research Article: Fundamental guides for future studies.