一般仿射几何中的最大曲线与热流

IF 0.6 4区 数学 Q3 MATHEMATICS
Yun Yang
{"title":"一般仿射几何中的最大曲线与热流","authors":"Yun Yang","doi":"10.1016/j.difgeo.2023.102079","DOIUrl":null,"url":null,"abstract":"<div><p><span>In Euclidean geometry, the shortest distance between two points is a </span><em>straight line</em>. Chern made a conjecture (cf. <span>[11]</span><span>) in 1977 that an affine maximal graph of a smooth and locally uniformly convex function on two-dimensional Euclidean space </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> must be a <span><em>paraboloid</em></span><span>. In 2000, Trudinger and Wang completed the proof of this conjecture in affine geometry (cf. </span><span>[47]</span>). (<em>Caution: in these literatures, the term “affine geometry” refers to “equi-affine geometry”</em>.) A natural problem arises: Whether the <span><em>hyperbola</em></span> is a general-affine maximal curve in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span>? In this paper, by utilizing the evolution equations for curves, we obtain the second variational formula for general-affine extremal curves in </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and show the general-affine maximal curves in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> are much more abundant and include the explicit curves <span><math><mi>y</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msup><mspace></mspace><mrow><mo>(</mo><mi>α</mi><mspace></mspace><mtext>is a constant and</mtext><mspace></mspace><mi>α</mi><mo>∉</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mo>}</mo><mo>)</mo></mrow></math></span> and <span><math><mi>y</mi><mo>=</mo><mi>x</mi><mi>log</mi><mo>⁡</mo><mi>x</mi></math></span><span>. At the same time, we generalize the fundamental theory of curves in higher dimensions, equipped with </span><span><math><mtext>GA</mtext><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mtext>GL</mtext><mo>(</mo><mi>n</mi><mo>)</mo><mo>⋉</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span><span>. Moreover, in general-affine plane geometry, an isoperimetric inequality<span> is investigated, and a complete classification of the solitons for general-affine heat flow is provided. We also study the local existence, uniqueness, and long-term behavior of this general-affine heat flow. A closed embedded curve will converge to an </span></span>ellipse when evolving according to the general-affine heat flow is proved.</span></p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"91 ","pages":"Article 102079"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The maximal curves and heat flow in general-affine geometry\",\"authors\":\"Yun Yang\",\"doi\":\"10.1016/j.difgeo.2023.102079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In Euclidean geometry, the shortest distance between two points is a </span><em>straight line</em>. Chern made a conjecture (cf. <span>[11]</span><span>) in 1977 that an affine maximal graph of a smooth and locally uniformly convex function on two-dimensional Euclidean space </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> must be a <span><em>paraboloid</em></span><span>. In 2000, Trudinger and Wang completed the proof of this conjecture in affine geometry (cf. </span><span>[47]</span>). (<em>Caution: in these literatures, the term “affine geometry” refers to “equi-affine geometry”</em>.) A natural problem arises: Whether the <span><em>hyperbola</em></span> is a general-affine maximal curve in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span>? In this paper, by utilizing the evolution equations for curves, we obtain the second variational formula for general-affine extremal curves in </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and show the general-affine maximal curves in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> are much more abundant and include the explicit curves <span><math><mi>y</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msup><mspace></mspace><mrow><mo>(</mo><mi>α</mi><mspace></mspace><mtext>is a constant and</mtext><mspace></mspace><mi>α</mi><mo>∉</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mo>}</mo><mo>)</mo></mrow></math></span> and <span><math><mi>y</mi><mo>=</mo><mi>x</mi><mi>log</mi><mo>⁡</mo><mi>x</mi></math></span><span>. At the same time, we generalize the fundamental theory of curves in higher dimensions, equipped with </span><span><math><mtext>GA</mtext><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mtext>GL</mtext><mo>(</mo><mi>n</mi><mo>)</mo><mo>⋉</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span><span>. Moreover, in general-affine plane geometry, an isoperimetric inequality<span> is investigated, and a complete classification of the solitons for general-affine heat flow is provided. We also study the local existence, uniqueness, and long-term behavior of this general-affine heat flow. A closed embedded curve will converge to an </span></span>ellipse when evolving according to the general-affine heat flow is proved.</span></p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"91 \",\"pages\":\"Article 102079\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523001055\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523001055","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在欧几里得几何中,两点之间最短距离是一条直线。Chern在1977年提出了一个猜想(参见[11]),即二维欧几里德空间R2上的光滑局部一致凸函数的仿射极大图必须是一个抛物面。2000年,Trudinger和Wang在仿射几何中完成了这一猜想的证明(参见[47])。(注意:在这些文献中,术语“仿射几何”是指“等仿射几何”。)一个自然的问题出现了:双曲线是否是R2中的一般仿射极大曲线?本文利用曲线演化方程,得到了R2中一般仿射极值曲线的二次变分公式,并证明了R2中一般仿射极值曲线更为丰富,包括显式曲线y=xα(α为常数,α∈{0,1,12,2})和y=xlog x。同时,我们推广了高维曲线的基本理论,配备了GA(n)=GL(n) × Rn。此外,在一般仿射平面几何中,研究了一个等周不等式,给出了一般仿射热流孤子的完整分类。我们还研究了这种一般仿射热流的局部存在性、唯一性和长期行为。证明了封闭嵌套曲线在根据一般仿射热流演化时收敛于椭圆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The maximal curves and heat flow in general-affine geometry

In Euclidean geometry, the shortest distance between two points is a straight line. Chern made a conjecture (cf. [11]) in 1977 that an affine maximal graph of a smooth and locally uniformly convex function on two-dimensional Euclidean space R2 must be a paraboloid. In 2000, Trudinger and Wang completed the proof of this conjecture in affine geometry (cf. [47]). (Caution: in these literatures, the term “affine geometry” refers to “equi-affine geometry”.) A natural problem arises: Whether the hyperbola is a general-affine maximal curve in R2? In this paper, by utilizing the evolution equations for curves, we obtain the second variational formula for general-affine extremal curves in R2, and show the general-affine maximal curves in R2 are much more abundant and include the explicit curves y=xα(αis a constant andα{0,1,12,2}) and y=xlogx. At the same time, we generalize the fundamental theory of curves in higher dimensions, equipped with GA(n)=GL(n)Rn. Moreover, in general-affine plane geometry, an isoperimetric inequality is investigated, and a complete classification of the solitons for general-affine heat flow is provided. We also study the local existence, uniqueness, and long-term behavior of this general-affine heat flow. A closed embedded curve will converge to an ellipse when evolving according to the general-affine heat flow is proved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信