{"title":"一般仿射几何中的最大曲线与热流","authors":"Yun Yang","doi":"10.1016/j.difgeo.2023.102079","DOIUrl":null,"url":null,"abstract":"<div><p><span>In Euclidean geometry, the shortest distance between two points is a </span><em>straight line</em>. Chern made a conjecture (cf. <span>[11]</span><span>) in 1977 that an affine maximal graph of a smooth and locally uniformly convex function on two-dimensional Euclidean space </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> must be a <span><em>paraboloid</em></span><span>. In 2000, Trudinger and Wang completed the proof of this conjecture in affine geometry (cf. </span><span>[47]</span>). (<em>Caution: in these literatures, the term “affine geometry” refers to “equi-affine geometry”</em>.) A natural problem arises: Whether the <span><em>hyperbola</em></span> is a general-affine maximal curve in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span>? In this paper, by utilizing the evolution equations for curves, we obtain the second variational formula for general-affine extremal curves in </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and show the general-affine maximal curves in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> are much more abundant and include the explicit curves <span><math><mi>y</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msup><mspace></mspace><mrow><mo>(</mo><mi>α</mi><mspace></mspace><mtext>is a constant and</mtext><mspace></mspace><mi>α</mi><mo>∉</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mo>}</mo><mo>)</mo></mrow></math></span> and <span><math><mi>y</mi><mo>=</mo><mi>x</mi><mi>log</mi><mo></mo><mi>x</mi></math></span><span>. At the same time, we generalize the fundamental theory of curves in higher dimensions, equipped with </span><span><math><mtext>GA</mtext><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mtext>GL</mtext><mo>(</mo><mi>n</mi><mo>)</mo><mo>⋉</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span><span>. Moreover, in general-affine plane geometry, an isoperimetric inequality<span> is investigated, and a complete classification of the solitons for general-affine heat flow is provided. We also study the local existence, uniqueness, and long-term behavior of this general-affine heat flow. A closed embedded curve will converge to an </span></span>ellipse when evolving according to the general-affine heat flow is proved.</span></p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"91 ","pages":"Article 102079"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The maximal curves and heat flow in general-affine geometry\",\"authors\":\"Yun Yang\",\"doi\":\"10.1016/j.difgeo.2023.102079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In Euclidean geometry, the shortest distance between two points is a </span><em>straight line</em>. Chern made a conjecture (cf. <span>[11]</span><span>) in 1977 that an affine maximal graph of a smooth and locally uniformly convex function on two-dimensional Euclidean space </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> must be a <span><em>paraboloid</em></span><span>. In 2000, Trudinger and Wang completed the proof of this conjecture in affine geometry (cf. </span><span>[47]</span>). (<em>Caution: in these literatures, the term “affine geometry” refers to “equi-affine geometry”</em>.) A natural problem arises: Whether the <span><em>hyperbola</em></span> is a general-affine maximal curve in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span>? In this paper, by utilizing the evolution equations for curves, we obtain the second variational formula for general-affine extremal curves in </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and show the general-affine maximal curves in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> are much more abundant and include the explicit curves <span><math><mi>y</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msup><mspace></mspace><mrow><mo>(</mo><mi>α</mi><mspace></mspace><mtext>is a constant and</mtext><mspace></mspace><mi>α</mi><mo>∉</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mo>}</mo><mo>)</mo></mrow></math></span> and <span><math><mi>y</mi><mo>=</mo><mi>x</mi><mi>log</mi><mo></mo><mi>x</mi></math></span><span>. At the same time, we generalize the fundamental theory of curves in higher dimensions, equipped with </span><span><math><mtext>GA</mtext><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mtext>GL</mtext><mo>(</mo><mi>n</mi><mo>)</mo><mo>⋉</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span><span>. Moreover, in general-affine plane geometry, an isoperimetric inequality<span> is investigated, and a complete classification of the solitons for general-affine heat flow is provided. We also study the local existence, uniqueness, and long-term behavior of this general-affine heat flow. A closed embedded curve will converge to an </span></span>ellipse when evolving according to the general-affine heat flow is proved.</span></p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"91 \",\"pages\":\"Article 102079\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523001055\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523001055","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The maximal curves and heat flow in general-affine geometry
In Euclidean geometry, the shortest distance between two points is a straight line. Chern made a conjecture (cf. [11]) in 1977 that an affine maximal graph of a smooth and locally uniformly convex function on two-dimensional Euclidean space must be a paraboloid. In 2000, Trudinger and Wang completed the proof of this conjecture in affine geometry (cf. [47]). (Caution: in these literatures, the term “affine geometry” refers to “equi-affine geometry”.) A natural problem arises: Whether the hyperbola is a general-affine maximal curve in ? In this paper, by utilizing the evolution equations for curves, we obtain the second variational formula for general-affine extremal curves in , and show the general-affine maximal curves in are much more abundant and include the explicit curves and . At the same time, we generalize the fundamental theory of curves in higher dimensions, equipped with . Moreover, in general-affine plane geometry, an isoperimetric inequality is investigated, and a complete classification of the solitons for general-affine heat flow is provided. We also study the local existence, uniqueness, and long-term behavior of this general-affine heat flow. A closed embedded curve will converge to an ellipse when evolving according to the general-affine heat flow is proved.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.