绝对闭半群。

IF 1.8 2区 数学 Q1 MATHEMATICS
Taras Banakh, Serhii Bardyla
{"title":"绝对闭半群。","authors":"Taras Banakh, Serhii Bardyla","doi":"10.1007/s13398-023-01519-2","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math><mi>C</mi></math> be a class of topological semigroups. A semigroup <i>X</i> is called <i>absolutely</i> <math><mi>C</mi></math><i>-closed</i> if for any homomorphism <math><mrow><mi>h</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow></math> to a topological semigroup <math><mrow><mi>Y</mi><mo>∈</mo><mi>C</mi></mrow></math>, the image <i>h</i>[<i>X</i>] is closed in <i>Y</i>. Let <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mn>1</mn></mrow></msub><mi>S</mi></mrow></math>, <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mn>2</mn></mrow></msub><mi>S</mi></mrow></math>, and <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mi>z</mi></mrow></msub><mi>S</mi></mrow></math> be the classes of <math><msub><mi>T</mi><mn>1</mn></msub></math>, Hausdorff, and Tychonoff zero-dimensional topological semigroups, respectively. We prove that a commutative semigroup <i>X</i> is absolutely <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mi>z</mi></mrow></msub><mi>S</mi></mrow></math>-closed if and only if <i>X</i> is absolutely <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mn>2</mn></mrow></msub><mi>S</mi></mrow></math>-closed if and only if <i>X</i> is chain-finite, bounded, group-finite and Clifford + finite. On the other hand, a commutative semigroup <i>X</i> is absolutely <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mn>1</mn></mrow></msub><mi>S</mi></mrow></math>-closed if and only if <i>X</i> is finite. Also, for a given absolutely <math><mi>C</mi></math>-closed semigroup <i>X</i> we detect absolutely <math><mi>C</mi></math>-closed subsemigroups in the center of <i>X</i>.</p>","PeriodicalId":54471,"journal":{"name":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","volume":"118 1","pages":"23"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632307/pdf/","citationCount":"0","resultStr":"{\"title\":\"Absolutely closed semigroups.\",\"authors\":\"Taras Banakh, Serhii Bardyla\",\"doi\":\"10.1007/s13398-023-01519-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Let <math><mi>C</mi></math> be a class of topological semigroups. A semigroup <i>X</i> is called <i>absolutely</i> <math><mi>C</mi></math><i>-closed</i> if for any homomorphism <math><mrow><mi>h</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow></math> to a topological semigroup <math><mrow><mi>Y</mi><mo>∈</mo><mi>C</mi></mrow></math>, the image <i>h</i>[<i>X</i>] is closed in <i>Y</i>. Let <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mn>1</mn></mrow></msub><mi>S</mi></mrow></math>, <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mn>2</mn></mrow></msub><mi>S</mi></mrow></math>, and <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mi>z</mi></mrow></msub><mi>S</mi></mrow></math> be the classes of <math><msub><mi>T</mi><mn>1</mn></msub></math>, Hausdorff, and Tychonoff zero-dimensional topological semigroups, respectively. We prove that a commutative semigroup <i>X</i> is absolutely <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mi>z</mi></mrow></msub><mi>S</mi></mrow></math>-closed if and only if <i>X</i> is absolutely <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mn>2</mn></mrow></msub><mi>S</mi></mrow></math>-closed if and only if <i>X</i> is chain-finite, bounded, group-finite and Clifford + finite. On the other hand, a commutative semigroup <i>X</i> is absolutely <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mn>1</mn></mrow></msub><mi>S</mi></mrow></math>-closed if and only if <i>X</i> is finite. Also, for a given absolutely <math><mi>C</mi></math>-closed semigroup <i>X</i> we detect absolutely <math><mi>C</mi></math>-closed subsemigroups in the center of <i>X</i>.</p>\",\"PeriodicalId\":54471,\"journal\":{\"name\":\"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas\",\"volume\":\"118 1\",\"pages\":\"23\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632307/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13398-023-01519-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13398-023-01519-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设C是一类拓扑半群。如果对于拓扑半群Y∈C的任何同态h:X→Y,像h[X]在Y中是闭的,则称为绝对C闭半群X。设T1S、T2S、TzS分别为T1、Hausdorff、Tychonoff零维拓扑半群的类。证明了交换半群X是绝对tss闭的,当且仅当X是链有限、有界、群有限和Clifford +有限。另一方面,交换半群X是绝对t1s闭的当且仅当X是有限的。同样,对于给定的绝对c闭半群X,我们在X的中心检测绝对c闭的子半群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Absolutely closed semigroups.

Let C be a class of topological semigroups. A semigroup X is called absolutely C-closed if for any homomorphism h:XY to a topological semigroup YC, the image h[X] is closed in Y. Let T1S, T2S, and TzS be the classes of T1, Hausdorff, and Tychonoff zero-dimensional topological semigroups, respectively. We prove that a commutative semigroup X is absolutely TzS-closed if and only if X is absolutely T2S-closed if and only if X is chain-finite, bounded, group-finite and Clifford + finite. On the other hand, a commutative semigroup X is absolutely T1S-closed if and only if X is finite. Also, for a given absolutely C-closed semigroup X we detect absolutely C-closed subsemigroups in the center of X.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
17.20%
发文量
151
审稿时长
>12 weeks
期刊介绍: The journal publishes, in English language only, high-quality Research Articles covering Algebra; Applied Mathematics; Computational Sciences; Geometry and Topology; Mathematical Analysis; Statistics and Operations Research. Also featured are Survey Articles in every mathematical field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信