Gaoxin Hou , Zhidong Yang , Dawei Zang , Jose-Jesus Fernández , Fa Zhang , Renmin Han
{"title":"标记检测器:一种在电子显微图中使用基于小波的模板进行鲁棒基准标记检测的方法。","authors":"Gaoxin Hou , Zhidong Yang , Dawei Zang , Jose-Jesus Fernández , Fa Zhang , Renmin Han","doi":"10.1016/j.jsb.2023.108044","DOIUrl":null,"url":null,"abstract":"<div><p>Fiducial marker detection in electron micrographs becomes an important and challenging task with the development of large-field electron microscopy. The fiducial marker detection plays an important role in several steps during the process of electron micrographs, such as the alignment and parameter calibrations. However, limited by the conditions of low signal-to-noise ratio (SNR) in the electron micrographs, the performance of fiducial marker detection is severely affected. In this work, we propose the MarkerDetector, a novel algorithm for detecting fiducial markers in electron micrographs. The proposed MarkerDetector is built upon the following contributions: Firstly, a wavelet-based template generation algorithm is devised in MarkerDetector. By adopting a shape-based criterion, a high-quality template can be obtained. Secondly, a robust marker determination strategy is devised by utilizing statistic-based filtering, which can guarantee the correctness of the detected fiducial markers. The average running time of our algorithm is 1.67 seconds with promising accuracy, indicating its practical feasibility for applications in electron micrographs.</p></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MarkerDetector: A method for robust fiducial marker detection in electron micrographs using wavelet-based template\",\"authors\":\"Gaoxin Hou , Zhidong Yang , Dawei Zang , Jose-Jesus Fernández , Fa Zhang , Renmin Han\",\"doi\":\"10.1016/j.jsb.2023.108044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fiducial marker detection in electron micrographs becomes an important and challenging task with the development of large-field electron microscopy. The fiducial marker detection plays an important role in several steps during the process of electron micrographs, such as the alignment and parameter calibrations. However, limited by the conditions of low signal-to-noise ratio (SNR) in the electron micrographs, the performance of fiducial marker detection is severely affected. In this work, we propose the MarkerDetector, a novel algorithm for detecting fiducial markers in electron micrographs. The proposed MarkerDetector is built upon the following contributions: Firstly, a wavelet-based template generation algorithm is devised in MarkerDetector. By adopting a shape-based criterion, a high-quality template can be obtained. Secondly, a robust marker determination strategy is devised by utilizing statistic-based filtering, which can guarantee the correctness of the detected fiducial markers. The average running time of our algorithm is 1.67 seconds with promising accuracy, indicating its practical feasibility for applications in electron micrographs.</p></div>\",\"PeriodicalId\":17074,\"journal\":{\"name\":\"Journal of structural biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047847723001077\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847723001077","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
MarkerDetector: A method for robust fiducial marker detection in electron micrographs using wavelet-based template
Fiducial marker detection in electron micrographs becomes an important and challenging task with the development of large-field electron microscopy. The fiducial marker detection plays an important role in several steps during the process of electron micrographs, such as the alignment and parameter calibrations. However, limited by the conditions of low signal-to-noise ratio (SNR) in the electron micrographs, the performance of fiducial marker detection is severely affected. In this work, we propose the MarkerDetector, a novel algorithm for detecting fiducial markers in electron micrographs. The proposed MarkerDetector is built upon the following contributions: Firstly, a wavelet-based template generation algorithm is devised in MarkerDetector. By adopting a shape-based criterion, a high-quality template can be obtained. Secondly, a robust marker determination strategy is devised by utilizing statistic-based filtering, which can guarantee the correctness of the detected fiducial markers. The average running time of our algorithm is 1.67 seconds with promising accuracy, indicating its practical feasibility for applications in electron micrographs.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure