基于MADRL的5G及以后的调度

Haowen Chang, R. B. S. Sree, Hao Chen, Jianzhong Zhang, Lingjia Liu
{"title":"基于MADRL的5G及以后的调度","authors":"Haowen Chang, R. B. S. Sree, Hao Chen, Jianzhong Zhang, Lingjia Liu","doi":"10.1109/MILCOM55135.2022.10017708","DOIUrl":null,"url":null,"abstract":"Scheduling in cellular networks plays a critical role and is a key differentiating factor of network performance. The design of scheduling algorithms is challenging since it has to be both computationally efficient to meet the real-time Transmission Time Interval (TTI) requirements and robust to inaccurate/coarse channel-feedback information. Addressing the aforementioned challenges, this paper presents a novel multi-agent deep reinforcement learning (MADRL) based scheduling strategy. The simulation results, under the setting of Channel Quality Indicator (CQI) feedback, show that the proposed method outperforms conventional scheduling in different variants of Proportional Fair (PF) scheduling policies with low computational time.","PeriodicalId":239804,"journal":{"name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MADRL Based Scheduling for 5G and Beyond\",\"authors\":\"Haowen Chang, R. B. S. Sree, Hao Chen, Jianzhong Zhang, Lingjia Liu\",\"doi\":\"10.1109/MILCOM55135.2022.10017708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scheduling in cellular networks plays a critical role and is a key differentiating factor of network performance. The design of scheduling algorithms is challenging since it has to be both computationally efficient to meet the real-time Transmission Time Interval (TTI) requirements and robust to inaccurate/coarse channel-feedback information. Addressing the aforementioned challenges, this paper presents a novel multi-agent deep reinforcement learning (MADRL) based scheduling strategy. The simulation results, under the setting of Channel Quality Indicator (CQI) feedback, show that the proposed method outperforms conventional scheduling in different variants of Proportional Fair (PF) scheduling policies with low computational time.\",\"PeriodicalId\":239804,\"journal\":{\"name\":\"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM55135.2022.10017708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM55135.2022.10017708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在蜂窝网络中,调度起着至关重要的作用,是决定网络性能的关键因素。调度算法的设计具有挑战性,因为它既要满足实时传输时间间隔(TTI)要求的计算效率,又要对不准确/粗糙的信道反馈信息具有鲁棒性。针对上述挑战,本文提出了一种新的基于多智能体深度强化学习(MADRL)的调度策略。仿真结果表明,在信道质量指标(CQI)反馈设置下,该方法在不同比例公平(PF)调度策略下均优于传统调度策略,且计算时间较短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MADRL Based Scheduling for 5G and Beyond
Scheduling in cellular networks plays a critical role and is a key differentiating factor of network performance. The design of scheduling algorithms is challenging since it has to be both computationally efficient to meet the real-time Transmission Time Interval (TTI) requirements and robust to inaccurate/coarse channel-feedback information. Addressing the aforementioned challenges, this paper presents a novel multi-agent deep reinforcement learning (MADRL) based scheduling strategy. The simulation results, under the setting of Channel Quality Indicator (CQI) feedback, show that the proposed method outperforms conventional scheduling in different variants of Proportional Fair (PF) scheduling policies with low computational time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信