基于对抗共识的弱监督众包学习

Menglong Wei, Shao-Yuan Li, Sheng-Jun Huang
{"title":"基于对抗共识的弱监督众包学习","authors":"Menglong Wei, Shao-Yuan Li, Sheng-Jun Huang","doi":"10.1109/CSCI54926.2021.00052","DOIUrl":null,"url":null,"abstract":"Crowdsourcing provides an efficient way to obtain labels for large datasets in the deep learning era. However, due to the non-expert workers, the annotations are usually noisy.Besides, concerning the labeling cost, sparse annotations are common. To face this challenge, we propose an approach based on adversarial consensus, which trains one classifier for each worker, and enforces their predictions over the ground-truth labels to be maximally consistent by exploiting the generative adversarial learning idea. We give two implementations respectively for the light and heavy noise cases. Extensive experiments on real-world and synthetic datasets demonstrate the effectiveness of our approach.","PeriodicalId":206881,"journal":{"name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakly Supervised Crowdsourcing Learning Based on Adversarial Consensus\",\"authors\":\"Menglong Wei, Shao-Yuan Li, Sheng-Jun Huang\",\"doi\":\"10.1109/CSCI54926.2021.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowdsourcing provides an efficient way to obtain labels for large datasets in the deep learning era. However, due to the non-expert workers, the annotations are usually noisy.Besides, concerning the labeling cost, sparse annotations are common. To face this challenge, we propose an approach based on adversarial consensus, which trains one classifier for each worker, and enforces their predictions over the ground-truth labels to be maximally consistent by exploiting the generative adversarial learning idea. We give two implementations respectively for the light and heavy noise cases. Extensive experiments on real-world and synthetic datasets demonstrate the effectiveness of our approach.\",\"PeriodicalId\":206881,\"journal\":{\"name\":\"2021 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI54926.2021.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI54926.2021.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

然而,由于非专业工作者,注释通常是嘈杂的。此外,关于标注成本,稀疏标注是常见的。我们分别针对轻噪声和重噪声情况给出了两种实现方法。在真实世界和合成数据集上进行的大量实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly Supervised Crowdsourcing Learning Based on Adversarial Consensus
Crowdsourcing provides an efficient way to obtain labels for large datasets in the deep learning era. However, due to the non-expert workers, the annotations are usually noisy.Besides, concerning the labeling cost, sparse annotations are common. To face this challenge, we propose an approach based on adversarial consensus, which trains one classifier for each worker, and enforces their predictions over the ground-truth labels to be maximally consistent by exploiting the generative adversarial learning idea. We give two implementations respectively for the light and heavy noise cases. Extensive experiments on real-world and synthetic datasets demonstrate the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信