L. Zhang, Chen Chen, Jinqian Tao, Zhaodun Huang, Hao Ding
{"title":"基于前景检测的视频稳像方法及其在航天测控中的应用","authors":"L. Zhang, Chen Chen, Jinqian Tao, Zhaodun Huang, Hao Ding","doi":"10.1117/12.2644567","DOIUrl":null,"url":null,"abstract":"The output video of the optical equipment in the aerospace measurement and control field is prone to the problem of image quality degradation caused by the operator’s unstable manual operation. to improve the classical motion estimation based video stabilization algorithm, a novel video stabilization method based on foreground detection is proposed in this paper. Firstly, a object detection datasets based on historical images of the launch center is collected and labeled. Secondly, inspired by transfer learning and prior knowledge of the image in launch center, a YOLO-based object detection method for rocket launching scene is designed. Then, the object detection method is introduced into the motion estimation based video stabilization pipeline in which the object detection is used for foreground detection so the tracked feature points are filtered to reduce the global motion estimation error caused by the motion of the background area. Thus, the error stabilization problem in the classic motion estimation-based video stabilization method is avoided. Experiments show that the video stabilization method proposed in this paper achieved better image stabilization effect in subject and object evaluation. This paper has certain reference significance for exploring the application of deep learning and artificial intelligence technology in the field of aerospace measurement and control field.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A foreground detection based video stabilization method and its application in aerospace measurement and control\",\"authors\":\"L. Zhang, Chen Chen, Jinqian Tao, Zhaodun Huang, Hao Ding\",\"doi\":\"10.1117/12.2644567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The output video of the optical equipment in the aerospace measurement and control field is prone to the problem of image quality degradation caused by the operator’s unstable manual operation. to improve the classical motion estimation based video stabilization algorithm, a novel video stabilization method based on foreground detection is proposed in this paper. Firstly, a object detection datasets based on historical images of the launch center is collected and labeled. Secondly, inspired by transfer learning and prior knowledge of the image in launch center, a YOLO-based object detection method for rocket launching scene is designed. Then, the object detection method is introduced into the motion estimation based video stabilization pipeline in which the object detection is used for foreground detection so the tracked feature points are filtered to reduce the global motion estimation error caused by the motion of the background area. Thus, the error stabilization problem in the classic motion estimation-based video stabilization method is avoided. Experiments show that the video stabilization method proposed in this paper achieved better image stabilization effect in subject and object evaluation. This paper has certain reference significance for exploring the application of deep learning and artificial intelligence technology in the field of aerospace measurement and control field.\",\"PeriodicalId\":314555,\"journal\":{\"name\":\"International Conference on Digital Image Processing\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Digital Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2644567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2644567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A foreground detection based video stabilization method and its application in aerospace measurement and control
The output video of the optical equipment in the aerospace measurement and control field is prone to the problem of image quality degradation caused by the operator’s unstable manual operation. to improve the classical motion estimation based video stabilization algorithm, a novel video stabilization method based on foreground detection is proposed in this paper. Firstly, a object detection datasets based on historical images of the launch center is collected and labeled. Secondly, inspired by transfer learning and prior knowledge of the image in launch center, a YOLO-based object detection method for rocket launching scene is designed. Then, the object detection method is introduced into the motion estimation based video stabilization pipeline in which the object detection is used for foreground detection so the tracked feature points are filtered to reduce the global motion estimation error caused by the motion of the background area. Thus, the error stabilization problem in the classic motion estimation-based video stabilization method is avoided. Experiments show that the video stabilization method proposed in this paper achieved better image stabilization effect in subject and object evaluation. This paper has certain reference significance for exploring the application of deep learning and artificial intelligence technology in the field of aerospace measurement and control field.