S. Hsieh, Chao-Wen Huang, Yi-Ling Huang, Ying-Chi Yang
{"title":"一种用于IP查找和更新的动态路由表设计","authors":"S. Hsieh, Chao-Wen Huang, Yi-Ling Huang, Ying-Chi Yang","doi":"10.1109/FUTURETECH.2010.5482735","DOIUrl":null,"url":null,"abstract":"IP lookup affects the speed of an incoming packet and the time required to determine which output port the packet should be sent to; hence, it plays an important role in the design of router-tables. In this paper, we propose a new data structure, called a multi-prefix trie, for use in designing dynamic router-tables. One key feature of our data structure is that each node can store more than one prefix, which reduces the number of memory accesses. When performing lookup, the structure can search more prefixes in one node and may find the longest matching prefix in an internal node rather than on a leaf. Moreover, when updating the router-table, it does not need to reconstruct the table. As a by-product, the proposed data structure minimizes the time required for dynamic router-table operations, including lookup, insertion, and deletion, and also reduces the number of memory accesses. We report the results of experiments conducted to compare the proposed data structure with other structures using the benchmark IPv4 prefix database AS4637 with 219,581 prefixes. \\end{abstract}","PeriodicalId":380192,"journal":{"name":"2010 5th International Conference on Future Information Technology","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Novel Dynamic Router-Tables Design for IP Lookup and Update\",\"authors\":\"S. Hsieh, Chao-Wen Huang, Yi-Ling Huang, Ying-Chi Yang\",\"doi\":\"10.1109/FUTURETECH.2010.5482735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IP lookup affects the speed of an incoming packet and the time required to determine which output port the packet should be sent to; hence, it plays an important role in the design of router-tables. In this paper, we propose a new data structure, called a multi-prefix trie, for use in designing dynamic router-tables. One key feature of our data structure is that each node can store more than one prefix, which reduces the number of memory accesses. When performing lookup, the structure can search more prefixes in one node and may find the longest matching prefix in an internal node rather than on a leaf. Moreover, when updating the router-table, it does not need to reconstruct the table. As a by-product, the proposed data structure minimizes the time required for dynamic router-table operations, including lookup, insertion, and deletion, and also reduces the number of memory accesses. We report the results of experiments conducted to compare the proposed data structure with other structures using the benchmark IPv4 prefix database AS4637 with 219,581 prefixes. \\\\end{abstract}\",\"PeriodicalId\":380192,\"journal\":{\"name\":\"2010 5th International Conference on Future Information Technology\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 5th International Conference on Future Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUTURETECH.2010.5482735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International Conference on Future Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUTURETECH.2010.5482735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Dynamic Router-Tables Design for IP Lookup and Update
IP lookup affects the speed of an incoming packet and the time required to determine which output port the packet should be sent to; hence, it plays an important role in the design of router-tables. In this paper, we propose a new data structure, called a multi-prefix trie, for use in designing dynamic router-tables. One key feature of our data structure is that each node can store more than one prefix, which reduces the number of memory accesses. When performing lookup, the structure can search more prefixes in one node and may find the longest matching prefix in an internal node rather than on a leaf. Moreover, when updating the router-table, it does not need to reconstruct the table. As a by-product, the proposed data structure minimizes the time required for dynamic router-table operations, including lookup, insertion, and deletion, and also reduces the number of memory accesses. We report the results of experiments conducted to compare the proposed data structure with other structures using the benchmark IPv4 prefix database AS4637 with 219,581 prefixes. \end{abstract}