多项式哈密顿系统的多重偏积分

A. Pranevich, A. Grin, Yanka Musafirov
{"title":"多项式哈密顿系统的多重偏积分","authors":"A. Pranevich, A. Grin, Yanka Musafirov","doi":"10.36120/2587-3644.v12i2.33-42","DOIUrl":null,"url":null,"abstract":"We consider an autonomous real polynomial Hamiltonian ordinary differential system. Sufficient conditions for the construction of additional first integrals on polynomial partial integrals and multiple polynomial partial integrals are obtained. Classes of autonomous polynomial Hamiltonian ordinary differential systems with first integrals which analytically expressed by multiple polynomial partial integrals are identified. Also we present examples that illustrate the theoretical results.","PeriodicalId":340784,"journal":{"name":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple partial integrals of polynomial Hamiltonian systems\",\"authors\":\"A. Pranevich, A. Grin, Yanka Musafirov\",\"doi\":\"10.36120/2587-3644.v12i2.33-42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an autonomous real polynomial Hamiltonian ordinary differential system. Sufficient conditions for the construction of additional first integrals on polynomial partial integrals and multiple polynomial partial integrals are obtained. Classes of autonomous polynomial Hamiltonian ordinary differential systems with first integrals which analytically expressed by multiple polynomial partial integrals are identified. Also we present examples that illustrate the theoretical results.\",\"PeriodicalId\":340784,\"journal\":{\"name\":\"Acta et commentationes: Ştiinţe Exacte şi ale Naturii\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et commentationes: Ştiinţe Exacte şi ale Naturii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36120/2587-3644.v12i2.33-42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36120/2587-3644.v12i2.33-42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个自治实多项式哈密顿常微分系统。给出了在多项式偏积分和多重多项式偏积分上构造附加第一积分的充分条件。研究了一类具有第一积分的自治多项式哈密顿常微分系统,该系统由多个多项式偏积分解析表示。并举例说明了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple partial integrals of polynomial Hamiltonian systems
We consider an autonomous real polynomial Hamiltonian ordinary differential system. Sufficient conditions for the construction of additional first integrals on polynomial partial integrals and multiple polynomial partial integrals are obtained. Classes of autonomous polynomial Hamiltonian ordinary differential systems with first integrals which analytically expressed by multiple polynomial partial integrals are identified. Also we present examples that illustrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信