基于自回归参数和连接方法的说话人识别技巧

M. Costin, A. Grichnik, M. Zbancioc
{"title":"基于自回归参数和连接方法的说话人识别技巧","authors":"M. Costin, A. Grichnik, M. Zbancioc","doi":"10.1109/SCS.2003.1226975","DOIUrl":null,"url":null,"abstract":"This study reveals more interesting aspects on speaker and speech recognition as: 1. different importance of certain spectral frequency bands on the process of speaker and speech recognition; 2. signal phase has a significant importance; and 3. vowel recognition is preponderant in the decision weighting. To resolve the paradox described in A.J. Grichnik (2000), autoregressive (AR) coefficients were used to compute feature vectors in order to teach neural networks (NN). Tests made by using a two layer perceptron (MLP) were compared to a radial basis function (RBF) network in order to obtain the best recognition results.","PeriodicalId":375963,"journal":{"name":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tips on speaker recognition by autoregressive parameters and connectionist methods\",\"authors\":\"M. Costin, A. Grichnik, M. Zbancioc\",\"doi\":\"10.1109/SCS.2003.1226975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study reveals more interesting aspects on speaker and speech recognition as: 1. different importance of certain spectral frequency bands on the process of speaker and speech recognition; 2. signal phase has a significant importance; and 3. vowel recognition is preponderant in the decision weighting. To resolve the paradox described in A.J. Grichnik (2000), autoregressive (AR) coefficients were used to compute feature vectors in order to teach neural networks (NN). Tests made by using a two layer perceptron (MLP) were compared to a radial basis function (RBF) network in order to obtain the best recognition results.\",\"PeriodicalId\":375963,\"journal\":{\"name\":\"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCS.2003.1226975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCS.2003.1226975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究揭示了说话人和语音识别更有趣的方面:1。某些频谱频带在说话人和语音识别过程中的重要性不同;2. 信号相位具有重要意义;和3。元音识别在决策权重中占主导地位。为了解决A.J. Grichnik(2000)中描述的悖论,使用自回归(AR)系数来计算特征向量,以教导神经网络(NN)。为了获得最佳的识别结果,将两层感知器(MLP)与径向基函数(RBF)网络进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tips on speaker recognition by autoregressive parameters and connectionist methods
This study reveals more interesting aspects on speaker and speech recognition as: 1. different importance of certain spectral frequency bands on the process of speaker and speech recognition; 2. signal phase has a significant importance; and 3. vowel recognition is preponderant in the decision weighting. To resolve the paradox described in A.J. Grichnik (2000), autoregressive (AR) coefficients were used to compute feature vectors in order to teach neural networks (NN). Tests made by using a two layer perceptron (MLP) were compared to a radial basis function (RBF) network in order to obtain the best recognition results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信