主要动机的存在

C. Haesemeyer, C. Weibel
{"title":"主要动机的存在","authors":"C. Haesemeyer, C. Weibel","doi":"10.2307/j.ctv941tx2.10","DOIUrl":null,"url":null,"abstract":"This chapter fixes a Rost variety 𝑋 for a sequence. It constructs a Rost motive 𝑀 = (𝑋, 𝑒) with coefficients ℤ(𝓁) under the inductive assumption that BL(n − 1) holds and discusses three important axioms. It introduces a candidate for the Rost motive and demonstrates how a motive satisfies two axioms. To further aid in the proof, the chapter argues that End(𝑀) is a local ring and then verifies an axiom proving that 𝑀 is a Rost motive whenever 𝑋 is a Rost variety. Finally, the chapter considers the historical background behind these equations. It reveals the eponymous Rost motive and considers Voevodsky's own construction of the Rost motive.","PeriodicalId":145287,"journal":{"name":"The Norm Residue Theorem in Motivic Cohomology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Rost Motives\",\"authors\":\"C. Haesemeyer, C. Weibel\",\"doi\":\"10.2307/j.ctv941tx2.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter fixes a Rost variety 𝑋 for a sequence. It constructs a Rost motive 𝑀 = (𝑋, 𝑒) with coefficients ℤ(𝓁) under the inductive assumption that BL(n − 1) holds and discusses three important axioms. It introduces a candidate for the Rost motive and demonstrates how a motive satisfies two axioms. To further aid in the proof, the chapter argues that End(𝑀) is a local ring and then verifies an axiom proving that 𝑀 is a Rost motive whenever 𝑋 is a Rost variety. Finally, the chapter considers the historical background behind these equations. It reveals the eponymous Rost motive and considers Voevodsky's own construction of the Rost motive.\",\"PeriodicalId\":145287,\"journal\":{\"name\":\"The Norm Residue Theorem in Motivic Cohomology\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Norm Residue Theorem in Motivic Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctv941tx2.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Norm Residue Theorem in Motivic Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv941tx2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章修复了一个序列的Rost变量𝑋。在BL(n−1)成立的归纳假设下,构造了系数为0(𝓁)的Rost动机𝑀=(𝑋,𝑒),并讨论了三个重要公理。它介绍了罗斯特动机的一个候选,并演示了一个动机如何满足两个公理。为了进一步帮助证明,本章论证了End(𝑀)是一个局部环,然后验证了一个公理,证明𝑀是一个Rost动机,只要𝑋是一个Rost变量。最后,本章考虑了这些方程背后的历史背景。它揭示了同名的罗斯特动机,并考虑了沃沃茨基自己对罗斯特动机的建构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Rost Motives
This chapter fixes a Rost variety 𝑋 for a sequence. It constructs a Rost motive 𝑀 = (𝑋, 𝑒) with coefficients ℤ(𝓁) under the inductive assumption that BL(n − 1) holds and discusses three important axioms. It introduces a candidate for the Rost motive and demonstrates how a motive satisfies two axioms. To further aid in the proof, the chapter argues that End(𝑀) is a local ring and then verifies an axiom proving that 𝑀 is a Rost motive whenever 𝑋 is a Rost variety. Finally, the chapter considers the historical background behind these equations. It reveals the eponymous Rost motive and considers Voevodsky's own construction of the Rost motive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信