线性码的子集子码

A. Urivskiy
{"title":"线性码的子集子码","authors":"A. Urivskiy","doi":"10.1109/RED.2012.6338415","DOIUrl":null,"url":null,"abstract":"We consider a problem of finding codes over alphabets whose size s is not equal to the size of any finite field. We adopted an approach when a linear block code is taken over some finite field GF(q) such that q >; s. Then a subcode is being found such that all the code symbols of all its codewords belong to a subset of GF(q) of size s. Upper and lower bounds on the cardinality of the subset subcode are given. Also coding procedures are considered. Error detection and/or correction procedures are those of the parent code.","PeriodicalId":403644,"journal":{"name":"2012 XIII International Symposium on Problems of Redundancy in Information and Control Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On subset subcodes of linear codes\",\"authors\":\"A. Urivskiy\",\"doi\":\"10.1109/RED.2012.6338415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a problem of finding codes over alphabets whose size s is not equal to the size of any finite field. We adopted an approach when a linear block code is taken over some finite field GF(q) such that q >; s. Then a subcode is being found such that all the code symbols of all its codewords belong to a subset of GF(q) of size s. Upper and lower bounds on the cardinality of the subset subcode are given. Also coding procedures are considered. Error detection and/or correction procedures are those of the parent code.\",\"PeriodicalId\":403644,\"journal\":{\"name\":\"2012 XIII International Symposium on Problems of Redundancy in Information and Control Systems\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 XIII International Symposium on Problems of Redundancy in Information and Control Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RED.2012.6338415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XIII International Symposium on Problems of Redundancy in Information and Control Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RED.2012.6338415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑一个在字母上寻找码的问题,其大小s不等于任何有限域的大小。我们采用了一种方法,当一个线性分组码被置于某个有限域GF(q)上时,使得q >;s.然后找到一个子码,使其所有码字的所有码符都属于大小为s的GF(q)的子集。给出该子码子集的基数的上界和下界。还考虑了编码过程。错误检测和/或纠正程序是父代码的程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On subset subcodes of linear codes
We consider a problem of finding codes over alphabets whose size s is not equal to the size of any finite field. We adopted an approach when a linear block code is taken over some finite field GF(q) such that q >; s. Then a subcode is being found such that all the code symbols of all its codewords belong to a subset of GF(q) of size s. Upper and lower bounds on the cardinality of the subset subcode are given. Also coding procedures are considered. Error detection and/or correction procedures are those of the parent code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信