亲和排序:一种高效网络搜索的新方案

Yi Liu, Benyu Zhang, Zheng Chen, Michael R. Lyu, Wei-Ying Ma
{"title":"亲和排序:一种高效网络搜索的新方案","authors":"Yi Liu, Benyu Zhang, Zheng Chen, Michael R. Lyu, Wei-Ying Ma","doi":"10.1145/1013367.1013464","DOIUrl":null,"url":null,"abstract":"Maximizing only the relevance between queries and documents will not satisfy users if they want the top search results to present a wide coverage of topics by a few representative documents. In this paper, we propose two new metrics to evaluate the performance of information retrieval: diversity, which measures the topic coverage of a group of documents, and information richness, which measures the amount of information contained in a document. Then we present a novel ranking scheme, Affinity Rank, which utilizes these two metrics to improve search results. We demonstrate how Affinity Rank works by a toy data set, and verify our method by experiments on real-world data sets.","PeriodicalId":409891,"journal":{"name":"WWW Alt. '04","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Affinity rank: a new scheme for efficient web search\",\"authors\":\"Yi Liu, Benyu Zhang, Zheng Chen, Michael R. Lyu, Wei-Ying Ma\",\"doi\":\"10.1145/1013367.1013464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximizing only the relevance between queries and documents will not satisfy users if they want the top search results to present a wide coverage of topics by a few representative documents. In this paper, we propose two new metrics to evaluate the performance of information retrieval: diversity, which measures the topic coverage of a group of documents, and information richness, which measures the amount of information contained in a document. Then we present a novel ranking scheme, Affinity Rank, which utilizes these two metrics to improve search results. We demonstrate how Affinity Rank works by a toy data set, and verify our method by experiments on real-world data sets.\",\"PeriodicalId\":409891,\"journal\":{\"name\":\"WWW Alt. '04\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WWW Alt. '04\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1013367.1013464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WWW Alt. '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013367.1013464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

如果用户希望顶部搜索结果通过几个代表性文档呈现广泛的主题,那么仅最大化查询和文档之间的相关性将无法满足用户的要求。在本文中,我们提出了两个新的指标来评估信息检索的性能:多样性,衡量一组文档的主题覆盖率,以及信息丰富度,衡量一个文档中包含的信息量。然后,我们提出了一种新的排名方案,亲和排名,利用这两个指标来提高搜索结果。我们通过玩具数据集演示了Affinity Rank如何工作,并通过在真实数据集上的实验验证了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affinity rank: a new scheme for efficient web search
Maximizing only the relevance between queries and documents will not satisfy users if they want the top search results to present a wide coverage of topics by a few representative documents. In this paper, we propose two new metrics to evaluate the performance of information retrieval: diversity, which measures the topic coverage of a group of documents, and information richness, which measures the amount of information contained in a document. Then we present a novel ranking scheme, Affinity Rank, which utilizes these two metrics to improve search results. We demonstrate how Affinity Rank works by a toy data set, and verify our method by experiments on real-world data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信