学习从少镜头稀疏标签分割医学图像

P. H. T. Gama, H. Oliveira, J. A. D. Santos
{"title":"学习从少镜头稀疏标签分割医学图像","authors":"P. H. T. Gama, H. Oliveira, J. A. D. Santos","doi":"10.1109/sibgrapi54419.2021.00021","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel approach for few-shot semantic segmentation with sparse labeled images. We investigate the effectiveness of our method, which is based on the Model-Agnostic Meta-Learning (MAML) algorithm, in the medical scenario, where the use of sparse labeling and few-shot can alleviate the cost of producing new annotated datasets. Our method uses sparse labels in the meta-training and dense labels in the meta-test, thus making the model learn to predict dense labels from sparse ones. We conducted experiments with four Chest X-Ray datasets to evaluate two types of annotations (grid and points). The results show that our method is the most suitable when the target domain highly differs from source domains, achieving Jaccard scores comparable to dense labels, using less than 2% of the pixels of an image with labels in few-shot scenarios.","PeriodicalId":197423,"journal":{"name":"2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","volume":"64 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning to Segment Medical Images from Few-Shot Sparse Labels\",\"authors\":\"P. H. T. Gama, H. Oliveira, J. A. D. Santos\",\"doi\":\"10.1109/sibgrapi54419.2021.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel approach for few-shot semantic segmentation with sparse labeled images. We investigate the effectiveness of our method, which is based on the Model-Agnostic Meta-Learning (MAML) algorithm, in the medical scenario, where the use of sparse labeling and few-shot can alleviate the cost of producing new annotated datasets. Our method uses sparse labels in the meta-training and dense labels in the meta-test, thus making the model learn to predict dense labels from sparse ones. We conducted experiments with four Chest X-Ray datasets to evaluate two types of annotations (grid and points). The results show that our method is the most suitable when the target domain highly differs from source domains, achieving Jaccard scores comparable to dense labels, using less than 2% of the pixels of an image with labels in few-shot scenarios.\",\"PeriodicalId\":197423,\"journal\":{\"name\":\"2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)\",\"volume\":\"64 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/sibgrapi54419.2021.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sibgrapi54419.2021.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于稀疏标记图像的少镜头语义分割方法。我们研究了基于模型不可知元学习(Model-Agnostic Meta-Learning, MAML)算法的方法在医疗场景中的有效性,在医疗场景中,使用稀疏标记和few-shot可以减轻生成新注释数据集的成本。我们的方法在元训练中使用稀疏标签,在元测试中使用密集标签,从而使模型从稀疏标签中学习预测密集标签。我们使用4个胸部x射线数据集进行实验,以评估两种类型的注释(网格和点)。结果表明,当目标域与源域差异很大时,我们的方法是最合适的,在少量拍摄场景下,使用不到2%的带有标签的图像像素,实现了与密集标签相当的Jaccard分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to Segment Medical Images from Few-Shot Sparse Labels
In this paper, we propose a novel approach for few-shot semantic segmentation with sparse labeled images. We investigate the effectiveness of our method, which is based on the Model-Agnostic Meta-Learning (MAML) algorithm, in the medical scenario, where the use of sparse labeling and few-shot can alleviate the cost of producing new annotated datasets. Our method uses sparse labels in the meta-training and dense labels in the meta-test, thus making the model learn to predict dense labels from sparse ones. We conducted experiments with four Chest X-Ray datasets to evaluate two types of annotations (grid and points). The results show that our method is the most suitable when the target domain highly differs from source domains, achieving Jaccard scores comparable to dense labels, using less than 2% of the pixels of an image with labels in few-shot scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信