软件公司的自动工作量估计

Orawat Yodnual, Wanus Srimaharaj, R. Chaisricharoen, Kanchit Pamanee
{"title":"软件公司的自动工作量估计","authors":"Orawat Yodnual, Wanus Srimaharaj, R. Chaisricharoen, Kanchit Pamanee","doi":"10.1145/3439133.3439135","DOIUrl":null,"url":null,"abstract":"Normally, organizations have to estimate the workload relying on limited resources. An appropriate estimation method can improve workforce optimization. In the software house, workload categorization and estimation can be acquired from the information technology management. Nevertheless, there are several factors such as work priority and specific goals that affect the workload level. General workload management spends a long time and decreases task management quality. Therefore, this study applies machine learning, Naïve Bayes, to estimate the workload automatically. This classification method increases the accuracy of workload estimation, along with reducing the time consumption for the whole system.","PeriodicalId":291985,"journal":{"name":"2020 4th International Conference on Artificial Intelligence and Virtual Reality","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Workload Estimation for Software House\",\"authors\":\"Orawat Yodnual, Wanus Srimaharaj, R. Chaisricharoen, Kanchit Pamanee\",\"doi\":\"10.1145/3439133.3439135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Normally, organizations have to estimate the workload relying on limited resources. An appropriate estimation method can improve workforce optimization. In the software house, workload categorization and estimation can be acquired from the information technology management. Nevertheless, there are several factors such as work priority and specific goals that affect the workload level. General workload management spends a long time and decreases task management quality. Therefore, this study applies machine learning, Naïve Bayes, to estimate the workload automatically. This classification method increases the accuracy of workload estimation, along with reducing the time consumption for the whole system.\",\"PeriodicalId\":291985,\"journal\":{\"name\":\"2020 4th International Conference on Artificial Intelligence and Virtual Reality\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th International Conference on Artificial Intelligence and Virtual Reality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3439133.3439135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th International Conference on Artificial Intelligence and Virtual Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3439133.3439135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通常,组织必须依靠有限的资源来估计工作量。适当的估计方法可以提高劳动力优化。在软件企业中,可以从信息技术管理中获得工作量的分类和估计。然而,有几个因素,如工作优先级和具体目标,会影响工作量水平。一般的工作负载管理耗时长,任务管理质量低。因此,本研究采用机器学习Naïve贝叶斯来自动估计工作量。这种分类方法提高了工作负载估计的准确性,同时减少了整个系统的时间消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Workload Estimation for Software House
Normally, organizations have to estimate the workload relying on limited resources. An appropriate estimation method can improve workforce optimization. In the software house, workload categorization and estimation can be acquired from the information technology management. Nevertheless, there are several factors such as work priority and specific goals that affect the workload level. General workload management spends a long time and decreases task management quality. Therefore, this study applies machine learning, Naïve Bayes, to estimate the workload automatically. This classification method increases the accuracy of workload estimation, along with reducing the time consumption for the whole system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信