基于FPGA的振荡生化网络低功耗大规模并行仿真

Serge Le Thanh, N. Lobato-Dauzier, F. Khoyratee, Romain Beaubois, T. Fujii, A. Genot, T. Levi
{"title":"基于FPGA的振荡生化网络低功耗大规模并行仿真","authors":"Serge Le Thanh, N. Lobato-Dauzier, F. Khoyratee, Romain Beaubois, T. Fujii, A. Genot, T. Levi","doi":"10.1109/BIOCAS.2019.8919020","DOIUrl":null,"url":null,"abstract":"Biological functions emerge from a multitude of chemical species woven into intricate biochemical networks. It is crucial to compute the dynamics of a biochemical network from its kinetics and topology. In order to reverse engineer networks and map their design space, dynamics needs to be simulated for many different parameters and topologies, leading to a combinatorial explosion that requires heavy computational power. To solve this issue, we show here an application of FPGA platform to simulate biochemical networks. As a toy model, we simulate a structurally simple network with a rich oscillatory dynamics: a predator-prey biochemical oscillators. The network mimics predator-prey dynamics. We show that FPGA can simulate the dynamics of PP faithfully. These results open the door to more energy-efficient simulations.","PeriodicalId":222264,"journal":{"name":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low power and massively parallel simulation of oscillatory biochemical networks on FPGA\",\"authors\":\"Serge Le Thanh, N. Lobato-Dauzier, F. Khoyratee, Romain Beaubois, T. Fujii, A. Genot, T. Levi\",\"doi\":\"10.1109/BIOCAS.2019.8919020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological functions emerge from a multitude of chemical species woven into intricate biochemical networks. It is crucial to compute the dynamics of a biochemical network from its kinetics and topology. In order to reverse engineer networks and map their design space, dynamics needs to be simulated for many different parameters and topologies, leading to a combinatorial explosion that requires heavy computational power. To solve this issue, we show here an application of FPGA platform to simulate biochemical networks. As a toy model, we simulate a structurally simple network with a rich oscillatory dynamics: a predator-prey biochemical oscillators. The network mimics predator-prey dynamics. We show that FPGA can simulate the dynamics of PP faithfully. These results open the door to more energy-efficient simulations.\",\"PeriodicalId\":222264,\"journal\":{\"name\":\"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2019.8919020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2019.8919020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物功能是由大量化学物质编织成复杂的生化网络而产生的。从生物化学网络的动力学和拓扑学来计算其动力学是至关重要的。为了对网络进行逆向工程并映射其设计空间,需要对许多不同的参数和拓扑进行动态模拟,从而导致需要大量计算能力的组合爆炸。为了解决这个问题,我们展示了一个FPGA平台的应用来模拟生化网络。作为一个玩具模型,我们模拟了一个结构简单的网络,具有丰富的振荡动力学:一个捕食者-猎物生化振荡器。这个网络模拟了捕食者-猎物的动态。结果表明,FPGA可以真实地模拟PP的动态过程。这些结果为更节能的模拟打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low power and massively parallel simulation of oscillatory biochemical networks on FPGA
Biological functions emerge from a multitude of chemical species woven into intricate biochemical networks. It is crucial to compute the dynamics of a biochemical network from its kinetics and topology. In order to reverse engineer networks and map their design space, dynamics needs to be simulated for many different parameters and topologies, leading to a combinatorial explosion that requires heavy computational power. To solve this issue, we show here an application of FPGA platform to simulate biochemical networks. As a toy model, we simulate a structurally simple network with a rich oscillatory dynamics: a predator-prey biochemical oscillators. The network mimics predator-prey dynamics. We show that FPGA can simulate the dynamics of PP faithfully. These results open the door to more energy-efficient simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信