考虑语义特征的时空轨迹相似性度量

Chengcheng Jiang, Yan Zhou, Cong Zhang
{"title":"考虑语义特征的时空轨迹相似性度量","authors":"Chengcheng Jiang, Yan Zhou, Cong Zhang","doi":"10.1109/ICPECA51329.2021.9362605","DOIUrl":null,"url":null,"abstract":"To solve the difficulties that considering the spatiotemporal and semantic features simultaneously in the similarity measurement of spatiotemporal trajectories, a multi-dimensional semantic matrix of spatiotemporal trajectory is constructed, and a unified quantitative semantic space is established by combining the singular value decomposition. The spatiotemporal trajectory is mapped into a feature semantic vector and a low rank feature matrix, containing the essential characteristics of trajectory, and the data dimensional reduction and denoising are realized after the decomposition process. Comparative experiments on real dataset demonstrate that the proposed method can accurately describe the essential characteristics of spatiotemporal trajectories on the basis of geospatial level, and effectively measure both semantic and geographic similarities among trajectories.","PeriodicalId":119798,"journal":{"name":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Similarity Measurement of Spatiotemporal Trajectories Considering Semantic Features\",\"authors\":\"Chengcheng Jiang, Yan Zhou, Cong Zhang\",\"doi\":\"10.1109/ICPECA51329.2021.9362605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the difficulties that considering the spatiotemporal and semantic features simultaneously in the similarity measurement of spatiotemporal trajectories, a multi-dimensional semantic matrix of spatiotemporal trajectory is constructed, and a unified quantitative semantic space is established by combining the singular value decomposition. The spatiotemporal trajectory is mapped into a feature semantic vector and a low rank feature matrix, containing the essential characteristics of trajectory, and the data dimensional reduction and denoising are realized after the decomposition process. Comparative experiments on real dataset demonstrate that the proposed method can accurately describe the essential characteristics of spatiotemporal trajectories on the basis of geospatial level, and effectively measure both semantic and geographic similarities among trajectories.\",\"PeriodicalId\":119798,\"journal\":{\"name\":\"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPECA51329.2021.9362605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA51329.2021.9362605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为解决时空轨迹相似性度量中同时考虑时空和语义特征的困难,构建了时空轨迹的多维语义矩阵,并结合奇异值分解建立了统一的定量语义空间。将时空轨迹映射为包含轨迹本质特征的特征语义向量和低秩特征矩阵,经过分解处理后实现数据降维和去噪。在真实数据集上的对比实验表明,该方法能够在地理空间层面上准确地描述时空轨迹的本质特征,有效地度量轨迹之间的语义相似性和地理相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity Measurement of Spatiotemporal Trajectories Considering Semantic Features
To solve the difficulties that considering the spatiotemporal and semantic features simultaneously in the similarity measurement of spatiotemporal trajectories, a multi-dimensional semantic matrix of spatiotemporal trajectory is constructed, and a unified quantitative semantic space is established by combining the singular value decomposition. The spatiotemporal trajectory is mapped into a feature semantic vector and a low rank feature matrix, containing the essential characteristics of trajectory, and the data dimensional reduction and denoising are realized after the decomposition process. Comparative experiments on real dataset demonstrate that the proposed method can accurately describe the essential characteristics of spatiotemporal trajectories on the basis of geospatial level, and effectively measure both semantic and geographic similarities among trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信