约束满足问题的卡特彼勒对偶性

C. Carvalho, V. Dalmau, A. Krokhin
{"title":"约束满足问题的卡特彼勒对偶性","authors":"C. Carvalho, V. Dalmau, A. Krokhin","doi":"10.1109/LICS.2008.19","DOIUrl":null,"url":null,"abstract":"The study of constraint satisfaction problems definable in various fragments of Datalog has recently gained considerable importance. We consider constraint satisfaction problems that are definable in the smallest natural recursive fragment of Datalog - monadic linear Datalog with at most one EDB per rule. We give combinatorial and algebraic characterisations of such problems, in terms of caterpillar dualities and lattice operations, respectively. We then apply our results to study graph H-colouring problems.","PeriodicalId":298300,"journal":{"name":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Caterpillar Duality for Constraint Satisfaction Problems\",\"authors\":\"C. Carvalho, V. Dalmau, A. Krokhin\",\"doi\":\"10.1109/LICS.2008.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of constraint satisfaction problems definable in various fragments of Datalog has recently gained considerable importance. We consider constraint satisfaction problems that are definable in the smallest natural recursive fragment of Datalog - monadic linear Datalog with at most one EDB per rule. We give combinatorial and algebraic characterisations of such problems, in terms of caterpillar dualities and lattice operations, respectively. We then apply our results to study graph H-colouring problems.\",\"PeriodicalId\":298300,\"journal\":{\"name\":\"2008 23rd Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 23rd Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2008.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2008.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在Datalog的各种片段中可定义的约束满足问题的研究最近变得相当重要。考虑约束满足问题,该问题可定义于数据集的最小自然递归片段-一元线性数据集,每条规则最多有一个EDB。我们给出了这类问题的组合和代数特征,分别在履带对偶和格运算方面。然后,我们将我们的结果应用于图h -着色问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Caterpillar Duality for Constraint Satisfaction Problems
The study of constraint satisfaction problems definable in various fragments of Datalog has recently gained considerable importance. We consider constraint satisfaction problems that are definable in the smallest natural recursive fragment of Datalog - monadic linear Datalog with at most one EDB per rule. We give combinatorial and algebraic characterisations of such problems, in terms of caterpillar dualities and lattice operations, respectively. We then apply our results to study graph H-colouring problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信