基于YOLOv3和SSD MobileNet v2的室内机器人图像目标识别算法比较

Adriana Carrillo Rios, Douglas Henke dos Reis, Rodrigo Mattos da Silva, Marco Antonio de Souza Leite Cuadros, D. Gamarra
{"title":"基于YOLOv3和SSD MobileNet v2的室内机器人图像目标识别算法比较","authors":"Adriana Carrillo Rios, Douglas Henke dos Reis, Rodrigo Mattos da Silva, Marco Antonio de Souza Leite Cuadros, D. Gamarra","doi":"10.1109/INDUSCON51756.2021.9529585","DOIUrl":null,"url":null,"abstract":"The YOLO and SSD algorithms are tools widely used for detecting objects in images or videos. This is due to the speed of detection and good performance in the identification of objects. This article presents a comparison of the YOLOv3 and SSD MobileNet v2 algorithms for identifying objects in images through simulations, the dataset used is an indoor robotics dataset. In order to reach the objective, several training sessions were carried out to analyze the behavior of each model when detecting objects in images. After analyzing the results, a better performance of the YOLOv3 model was observed, although this model takes more time to complete the training for the same number of steps compared to the SSD MobileNet v2 model. It is worth mentioning that this work presents for the first time a comparison between the SSD MobileNet v2 and YOLOv3 algorithms.","PeriodicalId":344476,"journal":{"name":"2021 14th IEEE International Conference on Industry Applications (INDUSCON)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Comparison of the YOLOv3 and SSD MobileNet v2 Algorithms for Identifying Objects in Images from an Indoor Robotics Dataset\",\"authors\":\"Adriana Carrillo Rios, Douglas Henke dos Reis, Rodrigo Mattos da Silva, Marco Antonio de Souza Leite Cuadros, D. Gamarra\",\"doi\":\"10.1109/INDUSCON51756.2021.9529585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The YOLO and SSD algorithms are tools widely used for detecting objects in images or videos. This is due to the speed of detection and good performance in the identification of objects. This article presents a comparison of the YOLOv3 and SSD MobileNet v2 algorithms for identifying objects in images through simulations, the dataset used is an indoor robotics dataset. In order to reach the objective, several training sessions were carried out to analyze the behavior of each model when detecting objects in images. After analyzing the results, a better performance of the YOLOv3 model was observed, although this model takes more time to complete the training for the same number of steps compared to the SSD MobileNet v2 model. It is worth mentioning that this work presents for the first time a comparison between the SSD MobileNet v2 and YOLOv3 algorithms.\",\"PeriodicalId\":344476,\"journal\":{\"name\":\"2021 14th IEEE International Conference on Industry Applications (INDUSCON)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 14th IEEE International Conference on Industry Applications (INDUSCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDUSCON51756.2021.9529585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th IEEE International Conference on Industry Applications (INDUSCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDUSCON51756.2021.9529585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

YOLO和SSD算法是广泛用于检测图像或视频中的物体的工具。这是由于检测速度快,在物体识别方面性能好。本文通过仿真比较了YOLOv3和SSD MobileNet v2算法用于识别图像中的物体,使用的数据集是室内机器人数据集。为了达到目标,进行了几次训练,分析了每个模型在检测图像中物体时的行为。在分析结果后,YOLOv3模型的性能更好,尽管该模型在相同步数下完成训练所需的时间比SSD MobileNet v2模型要长。值得一提的是,这项工作首次提出了SSD MobileNet v2和YOLOv3算法之间的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of the YOLOv3 and SSD MobileNet v2 Algorithms for Identifying Objects in Images from an Indoor Robotics Dataset
The YOLO and SSD algorithms are tools widely used for detecting objects in images or videos. This is due to the speed of detection and good performance in the identification of objects. This article presents a comparison of the YOLOv3 and SSD MobileNet v2 algorithms for identifying objects in images through simulations, the dataset used is an indoor robotics dataset. In order to reach the objective, several training sessions were carried out to analyze the behavior of each model when detecting objects in images. After analyzing the results, a better performance of the YOLOv3 model was observed, although this model takes more time to complete the training for the same number of steps compared to the SSD MobileNet v2 model. It is worth mentioning that this work presents for the first time a comparison between the SSD MobileNet v2 and YOLOv3 algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信