基于Cubature Kalman滤波的永磁同步电机速度和位置估计器

G. Gopinath, Shyama P Das
{"title":"基于Cubature Kalman滤波的永磁同步电机速度和位置估计器","authors":"G. Gopinath, Shyama P Das","doi":"10.1109/SLED.2015.7339265","DOIUrl":null,"url":null,"abstract":"This paper presents a Cubature Kalman Filter (CKF) based speed and position observer for a Permanent Magnet Synchronous Motor (PMSM). CKF is a new variety of Kalman filter which uses a third degree spherical-radial cubature rule to numerically compute multivariate moment integrals. Unlike in an Extended Kalman Filter(EKF), mean and covariance are propagated through the non-linear system, which minimizes the errors due to linearization. The proposed observer is incorporated in the sensorless control of an IPMSM of 1.5kW, 3000rpm rating. For the CKF algorithm, PMSM is modeled in stationary αβ reference frame. To get comparatively better transient performance and convergence of the CKF for a non-zero initial rotor position, system covariance matrix Q is chosen adaptively. Simulation results for a VSI fed IPMSM are presented and the convergence of CKF is shown for a variation of stator resistance. Performance of the proposed observer is compared with that of an EKF observer.","PeriodicalId":234682,"journal":{"name":"2015 IEEE Symposium on Sensorless Control for Electrical Drives (SLED)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Cubature Kalman Filter based speed and position estimator for Permanent Magnet Synchronous Motor\",\"authors\":\"G. Gopinath, Shyama P Das\",\"doi\":\"10.1109/SLED.2015.7339265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Cubature Kalman Filter (CKF) based speed and position observer for a Permanent Magnet Synchronous Motor (PMSM). CKF is a new variety of Kalman filter which uses a third degree spherical-radial cubature rule to numerically compute multivariate moment integrals. Unlike in an Extended Kalman Filter(EKF), mean and covariance are propagated through the non-linear system, which minimizes the errors due to linearization. The proposed observer is incorporated in the sensorless control of an IPMSM of 1.5kW, 3000rpm rating. For the CKF algorithm, PMSM is modeled in stationary αβ reference frame. To get comparatively better transient performance and convergence of the CKF for a non-zero initial rotor position, system covariance matrix Q is chosen adaptively. Simulation results for a VSI fed IPMSM are presented and the convergence of CKF is shown for a variation of stator resistance. Performance of the proposed observer is compared with that of an EKF observer.\",\"PeriodicalId\":234682,\"journal\":{\"name\":\"2015 IEEE Symposium on Sensorless Control for Electrical Drives (SLED)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Symposium on Sensorless Control for Electrical Drives (SLED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLED.2015.7339265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Symposium on Sensorless Control for Electrical Drives (SLED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLED.2015.7339265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种基于Cubature Kalman滤波(CKF)的永磁同步电机速度位置观测器。CKF是卡尔曼滤波的一种新变体,它采用三次球-径向定形规则对多元矩积分进行数值计算。与扩展卡尔曼滤波器(EKF)不同,均值和协方差通过非线性系统传播,从而最小化了线性化引起的误差。所提出的观测器被纳入1.5kW, 3000rpm额定IPMSM的无传感器控制中。对于CKF算法,PMSM在平稳αβ参照系中建模。为了获得较好的暂态性能和非零转子初始位置下的CKF收敛性,自适应选择了系统协方差矩阵Q。给出了VSI馈电永磁同步电动机的仿真结果,并给出了定子电阻变化时CKF的收敛性。将该观测器的性能与EKF观测器的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Cubature Kalman Filter based speed and position estimator for Permanent Magnet Synchronous Motor
This paper presents a Cubature Kalman Filter (CKF) based speed and position observer for a Permanent Magnet Synchronous Motor (PMSM). CKF is a new variety of Kalman filter which uses a third degree spherical-radial cubature rule to numerically compute multivariate moment integrals. Unlike in an Extended Kalman Filter(EKF), mean and covariance are propagated through the non-linear system, which minimizes the errors due to linearization. The proposed observer is incorporated in the sensorless control of an IPMSM of 1.5kW, 3000rpm rating. For the CKF algorithm, PMSM is modeled in stationary αβ reference frame. To get comparatively better transient performance and convergence of the CKF for a non-zero initial rotor position, system covariance matrix Q is chosen adaptively. Simulation results for a VSI fed IPMSM are presented and the convergence of CKF is shown for a variation of stator resistance. Performance of the proposed observer is compared with that of an EKF observer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信