{"title":"后关系代数及其证明系统","authors":"E. Orlowska","doi":"10.1109/ISMVL.1991.130746","DOIUrl":null,"url":null,"abstract":"A class of nonclassical relation algebras that correspond to Post logics is introduced and a method of algebraization of those logics is proposed. Relational semantics for Post logics leads to a Rasiowa-Sikorski style proof system for Post logics. A logic LPo intended to provide a formal tool to verify equations in Post relation algebras is defined. Two kinds of rules for the relational logic are defined: decomposition rules enabling the decomposition of relational formulas into some simpler formulas, depending on symbols of relational operations occurring in the formulas; and specific rules, which correspond to semantical postulates assumed in the models of the relational logic. The rules apply to finite sequences of formulas. As a result of application of a rule, a family of new sequences is obtained.<<ETX>>","PeriodicalId":127974,"journal":{"name":"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Post relation algebras and their proof system\",\"authors\":\"E. Orlowska\",\"doi\":\"10.1109/ISMVL.1991.130746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class of nonclassical relation algebras that correspond to Post logics is introduced and a method of algebraization of those logics is proposed. Relational semantics for Post logics leads to a Rasiowa-Sikorski style proof system for Post logics. A logic LPo intended to provide a formal tool to verify equations in Post relation algebras is defined. Two kinds of rules for the relational logic are defined: decomposition rules enabling the decomposition of relational formulas into some simpler formulas, depending on symbols of relational operations occurring in the formulas; and specific rules, which correspond to semantical postulates assumed in the models of the relational logic. The rules apply to finite sequences of formulas. As a result of application of a rule, a family of new sequences is obtained.<<ETX>>\",\"PeriodicalId\":127974,\"journal\":{\"name\":\"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1991.130746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1991.130746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A class of nonclassical relation algebras that correspond to Post logics is introduced and a method of algebraization of those logics is proposed. Relational semantics for Post logics leads to a Rasiowa-Sikorski style proof system for Post logics. A logic LPo intended to provide a formal tool to verify equations in Post relation algebras is defined. Two kinds of rules for the relational logic are defined: decomposition rules enabling the decomposition of relational formulas into some simpler formulas, depending on symbols of relational operations occurring in the formulas; and specific rules, which correspond to semantical postulates assumed in the models of the relational logic. The rules apply to finite sequences of formulas. As a result of application of a rule, a family of new sequences is obtained.<>