面向pubmed查询的动态概念本体构建

Jinoh Oh, Taehoon Kim, Sun Park, Wook-Shin Han, Hwanjo Yu
{"title":"面向pubmed查询的动态概念本体构建","authors":"Jinoh Oh, Taehoon Kim, Sun Park, Wook-Shin Han, Hwanjo Yu","doi":"10.1145/1871871.1871885","DOIUrl":null,"url":null,"abstract":"Exploring PubMed to find relevant information is challenging and time-consuming, as PubMed typically returns a large list of articles as a result of query. Existing works in improving the search quality on PubMed have focused on helping PubMed query formulation, clustering the results, or ranking by relevance. This paper proposes a novel system that dynamically constructs a concept ontology based on the search results, which visualizes related concepts to the query in the form of ontology. The concept ontology can make the PubMed search more effective by detecting related concepts and their relation hidden in the documents. The ontology can broaden the user's knowledge by recommending new concepts unexpected by the user, and also serves to narrow down the search results by recommending additional query terms. The ontology construction is processed in real-time as a result of query, integrated within our PubMed search engine called RefMED. Our system is accesible at \"http://dm.hwanjoyu.org/refmed\".","PeriodicalId":143937,"journal":{"name":"Data and Text Mining in Bioinformatics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic concept ontology construction for pubmed queries\",\"authors\":\"Jinoh Oh, Taehoon Kim, Sun Park, Wook-Shin Han, Hwanjo Yu\",\"doi\":\"10.1145/1871871.1871885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring PubMed to find relevant information is challenging and time-consuming, as PubMed typically returns a large list of articles as a result of query. Existing works in improving the search quality on PubMed have focused on helping PubMed query formulation, clustering the results, or ranking by relevance. This paper proposes a novel system that dynamically constructs a concept ontology based on the search results, which visualizes related concepts to the query in the form of ontology. The concept ontology can make the PubMed search more effective by detecting related concepts and their relation hidden in the documents. The ontology can broaden the user's knowledge by recommending new concepts unexpected by the user, and also serves to narrow down the search results by recommending additional query terms. The ontology construction is processed in real-time as a result of query, integrated within our PubMed search engine called RefMED. Our system is accesible at \\\"http://dm.hwanjoyu.org/refmed\\\".\",\"PeriodicalId\":143937,\"journal\":{\"name\":\"Data and Text Mining in Bioinformatics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data and Text Mining in Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1871871.1871885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and Text Mining in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1871871.1871885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在PubMed上搜索相关信息既困难又耗时,因为PubMed通常会返回大量文章作为查询的结果。现有的提高PubMed搜索质量的工作主要集中在帮助PubMed查询公式、聚类结果或根据相关性进行排名。本文提出了一种基于搜索结果动态构建概念本体的系统,以本体的形式将查询的相关概念可视化。概念本体通过检测隐藏在文档中的相关概念及其关系,使PubMed搜索更加有效。本体可以通过推荐用户意想不到的新概念来扩展用户的知识,也可以通过推荐额外的查询词来缩小搜索结果的范围。本体构建作为查询的结果实时处理,集成在我们的PubMed搜索引擎RefMED中。我们的系统可在“http://dm.hwanjoyu.org/refmed”访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic concept ontology construction for pubmed queries
Exploring PubMed to find relevant information is challenging and time-consuming, as PubMed typically returns a large list of articles as a result of query. Existing works in improving the search quality on PubMed have focused on helping PubMed query formulation, clustering the results, or ranking by relevance. This paper proposes a novel system that dynamically constructs a concept ontology based on the search results, which visualizes related concepts to the query in the form of ontology. The concept ontology can make the PubMed search more effective by detecting related concepts and their relation hidden in the documents. The ontology can broaden the user's knowledge by recommending new concepts unexpected by the user, and also serves to narrow down the search results by recommending additional query terms. The ontology construction is processed in real-time as a result of query, integrated within our PubMed search engine called RefMED. Our system is accesible at "http://dm.hwanjoyu.org/refmed".
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信